

Sanitary Survey Report and Sampling Plan for Sligo Harbour

Produced by

AQUAFACT International Services Ltd

In conjunction with

he Sea Fisheries Protection Authority November 2020

AQUAFACT INTERNATIONAL SERVICES Ltd., 12 KILKERRIN PARK, GALWAY. www.aquafact.ie info@aquafact.ie tel +353 (0) 91 756812

Table of Contents

1.	INTRODU	CTION	1
2.	OVERVIEV	V OF THE FISHERY/PRODUCTION AREA	3
2) HARBOUR FISHERY	
	2.2.1.	Location/Extent of Growing/Harvesting Area	
	2.2.2.	Description of Species	
	2.2.2.1.	Pacific Oysters (Crassostrea gigas)	
	2.2.2.2.	Clams	7
3.	IDENTIFIC	ATION OF POLLUTION SOURCES	8
3	.1. Desк	TOP SURVEY	8
	3.1.1.	Human Population	9
	3.1.2.	Tourism	
	3.1.3.	Sewage Discharges	
	3.1.3.1.	Water Treatment Works	
	3.1.3.2.	Continuous Discharges	
	3.1.3.3.	Rainfall Dependent / Emergency Sewage Discharges	22
	3.1.4.	Industrial Discharges	23
	3.1.5.	Landuse Discharges	
	3.1.6.	Wildlife	
	3.1.6.1.	Birds	
	3.1.6.2.	Aquatic mammals	
	3.1.7.	Other Pollution Sources	41
	3.1.7.1.	Shipping	41
3	.2. Shor	ELINE SURVEY REPORT	43
3	.3. Loca	TIONS OF SOURCES	71
4.	HYDROGE	APHY/HYDRODYNAMICS	79
Δ	.1. Simp	le/Complex Models	79
		H	
		& CURRENTS	
) AND WAVES	
		Discharges	
	-		_
4		FALL DATA	
	4.6.1.	Amount & Time of Year	
	4.6.2.	Frequency of Significant Rainfalls	
4	.7. Salin	ΙГΥ	96

4.8.	TURBIDITY	96
4.9.	Residence Time	96
4.10.	DISCUSSION	97
5. SHE	LLFISH AND WATER SAMPLING	98
5.1.	HISTORICAL DATA	
5.1.	1. Shellfish Water Quality	
5.1.	2. Shellfish Flesh Quality	
5.1.	3. Norovirus (NoV)	
5.2.	CURRENT DATA	115
5.2.	1. Sampling Sites & Methodology	115
5.2.	2. Microbial Analysis Results	
6. OVE	RALL ASSESSMENT OF THE EFFECT OF CONTAMINATION ON SHELLFISH	119
6.1.	Human sewage/Human population	110
6.2.	AGRICULTURE	
6.3.	RIVERS AND STREAMS	
	RIVERS AND STREAMS	
6.4.		
6.5.	WILDLIFE	
6.6.	SEASONALITY	
6.7.	SHORELINE SURVEY	_
6.8.	PACIFIC OYSTERS	126
7. RMI	PS AND SAMPLING PLAN	
7.1.	PACIFIC OYSTERS (CRASSOSTREA GIGAS)	127
7.2.	SPECIES SPECIFIC RMP MAPS	129
7.3.	GENERAL SAMPLING METHOD	130
8. REF	ERENCES	

List of Figures

Figure 2.1: Location of Natura 2000 sites overlapping with the Sligo Harbour BMCPA4
Figure 2.2: Bivalve Mollusc Classified Production Area and Designated Shellfish Waters within Sligo Harbour5
Figure 2.3: Licenced aquaculture sites within Sligo Harbour (Source: DAFM, 2019)
Figure 2.4: Licenced Pacific oyster harvesting sites in Sligo Harbour (Source: DAFM, 2019)
Figure 2.5: Licenced clam harvesting sites in Sligo Harbour (Source: DAFM, 2019)8
Figure 3.1: Sligo Harbour catchment area used for assessment of the pollution sources
Figure 3.2: Counties within the Sligo Harbour Catchment Area10
Figure 3.3: Electoral Divisions within the Sligo Harbour Catchment Area11
Figure 3.4: Human population within the Sligo Harbour Catchment Area (Source: CSO, 2019a)
Figure 3.5: Sewage Treatment Works within the Sligo Harbour Catchment Area (Source: The EPA, 2019a)19
Figure 3.6: Continuous Discharges associated with the Sewage Treatment Works within the Sligo Harbour
Catchment Area (Source: The EPA, 2019a)20
Figure 3.7: Rainfall Dependent Discharges associated with the Sewage Treatment Works within the Sligo Harbour
Catchment Area (Source: The EPA, 2019a)23
Figure 3.8: All industrial discharges within the Sligo Harbour Catchment Area (Source: (EPA, 2019c; EPA, 2019d).24
Figure 3.9: Section 4 discharges within the Sligo Harbour Catchment Area (Source: (EPA, 2019c; EPA, 2019d)26
Figure 3.10: Land use within the Sligo Harbour Catchment Area (Source: EPA, 2019e)
Figure 3.11: Breakdown of landuse within the Sligo Harbour Catchment Area (only landuse ≥1% is labelled)30
Figure 3.12: Number of farms within the Sligo Harbour Catchment Area (Source: CSO, 2019b)
Figure 3.13: Area farmed (ha) within the Sligo Harbour Catchment Area (Source: CSO, 2019b)
Figure 3.14: Average farm size (ha) within the Sligo Harbour Catchment Area (Source: CSO, 2019b)
Figure 3.15: Total crops within the Sligo Catchment Area (Source: CSO, 2019b)
Figure 3.16: Total grass and rough grazing within the Sligo Harbour Catchment Area (Source: CSO, 2019b)36
Figure 3.17: Cattle within the Sligo Harbour Catchment Area (Source: CSO, 2019b)
Figure 3.18: Sheep within the Sligo Harbour Catchment Area (Source: CSO, 2019b)
Figure 3.19: Horses within the Sligo Harbour Catchment Area (Source: CSO, 2019b)
Figure 3.20: Location of all boating facilities and activities in Sligo Harbour
Figure 3.21: Locations of GPS and Photograph Sites44
Figure 3.22: All features (numbering cross-reference to Table 3.13) identified during the shoreline survey48
Figure 3.23: Features 1-2 (numbering cross-reference to Table 3.13) identified during the shoreline survey49
Figure 3.24: Features 3-7 (numbering cross-reference to Table 3.13) identified during the shoreline survey50
Figure 3.25: Features 8-11 (numbering cross-reference to Table 3.13) identified during the shoreline survey51
Figure 3.26: Features 12-14 (numbering cross-reference to Table 3.13) identified during the shoreline survey52
Figure 3.27: Features 15-20 (numbering cross-reference to Table 3.13) identified during the shoreline survey53
Figure 3.28: Features 21-23 (numbering cross-reference to Table 3.13) identified during the shoreline survey54
Figure 3.29: Features 24-26 (numbering cross-reference to Table 3.13) identified during the shoreline survey55

Figure 3.30: Features 27-30 and 37-40 (numbering cross-reference to Table 3.13) identified during the shoreline
survey
Figure 3.31: Features 31-36 (numbering cross-reference to Table 3.13) identified during the shoreline survey57
Figure 3.32: Features 41-42 (numbering cross-reference to Table 3.13) identified during the shoreline survey58
Figure 3.33: Features 43-45 (numbering cross-reference to Table 3.13) identified during the shoreline survey59
Figure 3.34: Features 46-48 (numbering cross-reference to Table 3.13) identified during the shoreline survey60
Figure 3.35: Features 49-51 (numbering cross-reference to Table 3.13) identified during the shoreline survey61
Figure 3.36: Features 53-58 (numbering cross-reference to Table 3.13) identified during the shoreline survey62
Figure 3.37: Features 59-60 (numbering cross-reference to Table 3.13) identified during the shoreline survey63
Figure 3.38: Features 61-63 (numbering cross-reference to Table 3.13) identified during the shoreline survey64
Figure 3.39: Features 64-65 (numbering cross-reference to Table 3.13) identified during the shoreline survey65
Figure 3.40: Features 1-10 located during the shoreline survey. Refer to Figures 3.22-3.25 for site locations
Figure 3.41: Features 11-24 located during the shoreline survey. Refer to Figures 3.22 and 3.25 to 3.29 for site
locations
Figure 3.42: Features 25-38 located during the shoreline survey. Refer to Figures 3.22 and 3.29 to 3.31 for site
locations
Figure 3.43: Features 40-53 located during the shoreline survey. Refer to Figures 3.22, 3.30 and 3.32 to 3.36 for
site locations
Figure 3.44: Features 54-64 located during the shoreline survey. Refer to Figures 3.22 and 3.36 to 3.39 for site
locations
Figure 3.45: Location of all watercourses discharging into Sligo Harbour.
Figure 3.46: Locations of all discharges within the western end Sligo Harbour Catchment Area
Figure 3.47: Locations of all discharges within the eastern end Sligo Harbour Catchment Area
Figure 4.1: Depths in Sligo Harbour (Source: Admiralty Chart 2852)80
Figure 4.2: Tidal streams within Sligo Harbour (Admiralty Chart No. 2858)
Figure 4.3: Wind roses for Finner from 2014 to 2018 (Source: Met Eireann, 2019a)
Figure 4.4: Rivers, streams and lakes in the catchment areas including hydrometric station locations (Source: EPA,
2019)
Figure 4.5: WFD Status of the coastal, transitional, lake and river waterbodies in the catchment area (Source EPA,
2019)
Figure 4.6: Average and monthly flow data from the Bonet River at Dromahair (Source: OPW, 2019). *Total
discharge calculated from monthly average
Figure 4.7 Average monthly rainfall (mm) data from 1981 to 2010 for Ireland (Source: Met Eireann, 2019b)92
Figure 4.8: Location of Met Eireann weather stations in relation to the Sligo Harbour production area
Figure 4.9: Greatest daily rainfall per month for Sligo Airport from 2014-2018 (Source: Met Eireann, 2019c)95
Figure 4.10: 5 year monthly average rainfall (mm) at Sligo Airport weather station from 2014-2018 (Source: Met
Eireann, 2019d)
Figure 5.1: Sligo Main Drainage Water Sampling sites

Figure 5.2: Averaged seasonal <i>E. coli</i> levels from 2014 to 2018 (Source: AQUAFACT)10	01
Figure 5.3: Boxplot of <i>E. coli</i> results by season1	02
Figure 5.4: Locations of SFPA shellfish monitoring points for classification purposes1	.04
Figure 5.5: E. coli results from Clams at Sligo Harbour from 2014 to January 2015 (Source: SFPA)	.07
Figure 5.6: <i>E. coli</i> levels from oysters at Sligo Harbour from 2014 to 2019 (Source: SFPA)10	.09
Figure 5.7: Trend in geometric mean of <i>E. coli</i> levels from 2014 to 2018 for all both species in Sligo Harbour1	10
Figure 5.8: Water and Shellfish sampling sites1	16
Figure 5.9: <i>E. coli</i> levels recorded during the Sligo Harbour shore survey1	18
Figure 5.10: Shellfish flesh <i>E. coli</i> results for Sligo Harbour with previous 48 hour rainfall levels1	19
Figure 7.1: Bivalve Mollusc Classified Production Area and Designated Shellfish Waters within Sligo Harbour1	28
Figure 7.2: Location of the Oyster RMP within Sligo Harbour1	29

List of Tables

Table 3.1: Human population within the Sligo Harbour Catchment Area (Source: CSO, 2019a)13
Table 3.2: Households within the EDs in the Sligo Harbour Catchment Areas (Source: CSO, 2019a). 15
Table 3.3: Sewage Treatment Works within the Sligo Harbour Catchment Area (Source: EPA, 2019a)19
Table 3.4: Continuous Discharges within the Sligo Harbour Catchment area (Source: EPA, 2019a). Map Codes refer
to Figure 3.6
Table 3.5: Rainfall dependent discharges (storm water overflows) within the Sligo Harbour Catchment area
(Source: EPA, 2019a). Map Codes refer to Figure 3.722
Table 3.6: Industrial Facilities with discharges to water within the Sligo Harbour Catchment Area (Source: EPA,
2019c). Map Codes refer to Figure 3.725
Table 3.7: Details of Industrial discharges to water within the Sligo Harbour Catchment Area (Source: EPA, 2019c).
Map Codes refer to Figure 3.725
Table 3.8: Details on Section 4 discharges within the Sligo Harbour Catchment Area (Source: EPA, 2019d). Map
Codes refer to Figure 3.927
Table 3.9: Farm census data for all EDs within the Sligo Harbour Catchment Area (Source: CSO, 2019b)32
Table 3.10: Potential daily loading of <i>E. coli</i> (Jones & White, 1984)
Table 3.11: Total number of waterbirds in Sligo Harbour between 20011/12 and 2015/16 seasons (Source: BWI,
2019)
Table 3.12: Boating facilities in the Sligo Harbour. Map Code refers to Figure 4.20.
Table 3.13: Features identified during the shoreline survey. Refer to Figures 3.23 – 3.39 for locations and Figures
3.40 to 3.44 for photographs45
Table 3.14: Cross-referenced table for Figure 3.45 Watercourses.
Table 3.15: Cross-referenced table for Figures 3.46 and 3.47 Discharges.
Table 4.1: Sligo Harbour tidal characteristics (Source: Admiralty Chart No. 2858)
Table 4.2: Wind speed and direction data for Finner from 2014-2018 (Source: Met Eireann, 2019a)
Table 4.3: Seasonal averages (knots) for Finner wind data (Source: Met Eireann, 2019a).
Table 4.4: Monthly average rainfall at Belmullet from 1981 to 2010 (Source: Met Eireann, 2019c)

Table 4.5: Average seasonal rainfall values (mm) from 1981-2010 at Belmullet (Source: Met Eireann, 2019c)91
Table 4.6: Total monthly rainfall (mm) data at Sligo Airport Co. Sligo, from 2014 to 2018 (Source: Met Eireann,
2019d)94
Table 4.7: Total seasonal rainfall (mm) at Sligo Airport from 2014-2018 (Source: Met Eireann, 2019d)
Table 5.1: Faecal coliforms at in Sligo Harbour from 2014-2018 (Source: AQUAFACT). 100
Table 5.2: Averaged seasonal E. coli levels from 2014-2018. 100
Table 5.3: Coordinates of sampling sites within the Sligo Harbour Production Area. 103
Table 5.4: Classification system for shellfish harvesting areas
Table 5.5: Current and historical classification of shellfish beds in Sligo Harbour (2014 – 2019). 105
Table 5.6: <i>E. coli</i> results from Sligo Harbour Clams from 2014 to January 2015 (Source: SFPA)106
Table 5.7: <i>E. coli</i> results from Sligo Harbour oysters from 2014 to January 2019 (Source: SFPA)108
Table 5.8: Summary statistics of historical <i>E. coli</i> data monitored from shellfish beds in Sligo Harbour111
Table 5.9: Variation of annual geometric means of <i>E. coli</i> (MPN/100g) from shellfish beds monitored in Sligo
Harbour111
Table 5.10: Norovirus prevalence and concentrations in SH1 during winter months (2017 – 2020)
Table 5.11: Norovirus prevalence and concentrations observed in SH2 between December 2019 and March 2020
Table 5.12: Water sample coordinates with date of sampling116
Table 5.13: Shellfish sample coordinates with date of sampling. 116
Table 5.14: Water <i>E. coli</i> results for Sligo Harbour. 117
Table 5.15: Shellfish flesh E. coli results (MPN/100g) for Sligo Harbour.
Table 7.1: Coordinates of the Production Area. 127
Table 7.2: Coordinates of each RMP and its relevant species. 127

List of Appendices

- Appendix 1 Sligo Main Drainage *E. coli* results 2014-2018
- Appendix 2 Statistical Analysis
- Appendix 3 Species Specific Representative Monitoring Points

Glossary

AFBI	Agri-Food and Biosciences Institute
ANOVA	Analysis Of Variance
APP	Average Physical Product
ASP	Amnesic Shellfish Poisoning
Bathymetry	The measurement of water depth at various places of a water body
Benthic	Of, pertaining to, or occurring at the bottom of a body of water
Biogenic	Produced by living organisms or biological processes
Bioturbation	The stirring or mixing of sediment or soil by organisms
BOD	Biochemical Oxygen Demand
вто	British Trust for Ornithology
CD	Chart Datum
CEFAS	Centre for Environmental, Fisheries & Aquaculture Science
Corine landuse	is a Pan-European landuse and landcover mapping programme. It supplies spatial
	data on the state of the European environmental landscape and how it is changing
	over time. Based on the interpretation of satellite imagery, Corine landuse provides
	national scale maps of landcover and landcover change on a six year basis for thirty
	nine countries in Europe.
CSO	Central Statistics Office
CSO	Combined Sewer Overflow
DARD	Department of Agriculture and Rural Development
DED	District Electoral Divisions
Depuration	The process of purification or removal of impurities
Detrital/Detritus	Non-living, particulate, organic fragments which have been separated from the body
	to which they belonged
DSP	Diarrhetic Shellfish Poisoning
DWF	Dry Weather Flow
EC	European Communities
E. coli	Escherichia coli
EMS	Environmental Monitoring Stations
Epifauna	Animals living on the surface of marine or freshwater sediments
Epiflora	Plants living on the surface of marine or freshwater sediments
Fecundity	A measure of fertility or the capability to produce offspring
Fetch	The distance a wave can travel towards land without being blocked

FSA in NI	Food Standards Agency of Northern Ireland
Gamete	A reproductive cell that fuses with another gamete to produce a zygote, which
	develops into a new individual
Gametogenesis	The formation or production of gametes or reproductive cells
Genotype	The genetic makeup of an organism
Geometric Mean	The nth root of the product of n numbers (The average of the logarithmic values of a
	data set, converted back to a base 10 number).
GESAMP	Joint Group of Experts on the Scientific Aspects of Marine environmental Pollution
GIS	Geographical Information Systems
GPS	Global Positioning System
GSM	Global System for Mobile Communication
Heterozygosity	Having two different alleles of the same gene
Hydrodynamic	Forces in or motions of liquids
Hydrography	The description and analysis of the physical conditions, boundaries, flows and related
	characteristics of water bodies
IID	Infectious Intestinal Disease
INAB	Irish National Accreditation Board
Interspecific Competition	n Competition for resources between different species
	Competition for resources between different species
Intraspecific competition	Competition for resources between members of the same species
Intraspecific competition Intervalvular	Competition for resources between members of the same species Between valves
Intraspecific competition Intervalvular I-WeBS	Competition for resources between members of the same species Between valves Irish Wetland Bird Survey
Intraspecific competition Intervalvular I-WeBS LAT	Competition for resources between members of the same species Between valves Irish Wetland Bird Survey Lowest Astronomical Tide
Intraspecific competition Intervalvular I-WeBS LAT	Competition for resources between members of the same species Between valves Irish Wetland Bird Survey Lowest Astronomical Tide International Convention for the Prevention of Pollution from Ships, 1973 as
Intraspecific competition Intervalvular I-WeBS LAT	Competition for resources between members of the same species Between valves Irish Wetland Bird Survey Lowest Astronomical Tide International Convention for the Prevention of Pollution from Ships, 1973 as modified by the Protocol of 1978. Marpol is short for Marine Pollution, 73 for 1973
Intraspecific competition Intervalvular I-WeBS LAT Marpol 73/78	Competition for resources between members of the same species Between valves Irish Wetland Bird Survey Lowest Astronomical Tide International Convention for the Prevention of Pollution from Ships, 1973 as modified by the Protocol of 1978. Marpol is short for Marine Pollution, 73 for 1973 and 78 for 1978.
Intraspecific competition Intervalvular I-WeBS LAT Marpol 73/78	Competition for resources between members of the same species Between valves Irish Wetland Bird Survey Lowest Astronomical Tide International Convention for the Prevention of Pollution from Ships, 1973 as modified by the Protocol of 1978. Marpol is short for Marine Pollution, 73 for 1973 and 78 for 1978. The transformation from the larval to the adult form that occurs in the life cycle of
Intraspecific competition Intervalvular I-WeBS LAT Marpol 73/78 Metamorphosis	Competition for resources between members of the same species Between valves Irish Wetland Bird Survey Lowest Astronomical Tide International Convention for the Prevention of Pollution from Ships, 1973 as modified by the Protocol of 1978. Marpol is short for Marine Pollution, 73 for 1973 and 78 for 1978. The transformation from the larval to the adult form that occurs in the life cycle of many invertebrates and amphibians
Intraspecific competition Intervalvular I-WeBS LAT Marpol 73/78 Metamorphosis MPN	Competition for resources between members of the same species Between valves Irish Wetland Bird Survey Lowest Astronomical Tide International Convention for the Prevention of Pollution from Ships, 1973 as modified by the Protocol of 1978. Marpol is short for Marine Pollution, 73 for 1973 and 78 for 1978. The transformation from the larval to the adult form that occurs in the life cycle of many invertebrates and amphibians Most Probable Number
Intraspecific competition Intervalvular I-WeBS LAT Marpol 73/78 Metamorphosis MPN MSD	Competition for resources between members of the same species Between valves Irish Wetland Bird Survey Lowest Astronomical Tide International Convention for the Prevention of Pollution from Ships, 1973 as modified by the Protocol of 1978. Marpol is short for Marine Pollution, 73 for 1973 and 78 for 1978. The transformation from the larval to the adult form that occurs in the life cycle of many invertebrates and amphibians Most Probable Number Marine Sanitation Device
Intraspecific competition Intervalvular I-WeBS LAT Marpol 73/78 Metamorphosis MPN MSD Multilocus	Competition for resources between members of the same species Between valves Irish Wetland Bird Survey Lowest Astronomical Tide International Convention for the Prevention of Pollution from Ships, 1973 as modified by the Protocol of 1978. Marpol is short for Marine Pollution, 73 for 1973 and 78 for 1978. The transformation from the larval to the adult form that occurs in the life cycle of many invertebrates and amphibians Most Probable Number Marine Sanitation Device Occurring at more than one position or locus on a chromosome
Intraspecific competition Intervalvular I-WeBS LAT Marpol 73/78 Metamorphosis MPN MSD Multilocus NAP	Competition for resources between members of the same species Between valves Irish Wetland Bird Survey Lowest Astronomical Tide International Convention for the Prevention of Pollution from Ships, 1973 as modified by the Protocol of 1978. Marpol is short for Marine Pollution, 73 for 1973 and 78 for 1978. The transformation from the larval to the adult form that occurs in the life cycle of many invertebrates and amphibians Most Probable Number Marine Sanitation Device Occurring at more than one position or locus on a chromosome Nitrates Action Programme

NTBØrdrerread Tourist BoardNtrificationTe concorreation of anterial concorrection concorrection of anterial concorrection of anterial concorrection con	NISRA	Northern Ireland Statistics and Research Agency
NWaterNoter	NITB	Northern Ireland Tourist Board
NQ2NitritNQ3NitritNQ4NitritNQ4NorvusNR4NatourusNR4NatourusOSPARSolo/Pars convention (for the Protection of the Marine Environment of the Northe tatatatic)PNosbourusPAHOloy-ParsPAHOloy-Caromatic HydrocarbonsPAHOloy-Caromatic HydrocarbonsPAHOloy-Caromatic HydrocarbonsPAHOloy-Caromatic HydrocarbonsPAHOloy-Caromatic HydrocarbonsPAHOloy-Caromatic HydrocarbonsPARSOloy-Caromatic HydrocarbonsPARSOloy-Caromatic HydrocarbonsPARSOloy-Caromatic HydrocarbonsPARSOloy-Caromatic HydrocarbonsPARSAOloy-Caromatic HydrocarbonsPARSAOloy-Caromatic HydrocarbonsPARSAROloy-Caromatic HydrocarbonsPARSARActimic Telefoloy Supension or deposit feeders as potential food before entering tataget Participation and enternational conference, held in 1971 in Ramser International tataget Participation and enternational conference, held in 1971 in Ramser International tataget Participation and enternational conference, held in 1971 in Ramser International tataget Participational international conference, held in 1971 in Ramser International tataget Participational international conference, held in 1971 in Ramser International tataget Participational international conference, held in 1971 in Ramser International tataget Participational international internation	Nitrification	The conversion of ammonia to nitrate
NO3NitrateNO4NorveNRANationer Flow ArchiveNRANationer Flow ArchivePANosymotic HydrocarbonsPAHNationer Flow Archive HydrocarbonsPAHNationer Flow Archive HydrocarbonsPAHNationer Flow Archive HydrocarbonsPARNationer Flow Archive Hydrocarbons Archive Hydrocarbon Archive Hydro	NI Water	Northern Ireland Water
NoVNorwiruNRFANational River Flow ArchiveNRFANational River Flow ArchiveNRLSalonal River Flow ArchiveNRLSalonal Reference LaboratoryOSPARSolo/Paris convention (for the Protection of the Marine Environment of the North- East Atlantic)PSolo/Paris convention (for the Protection of the Marine Environment of the North- East Atlantic)PAHPolopolarisPAHPolopolarisPAthogenicPolopolaric HydrocarbonsPCBPolopolaric Causing diseasePCPPolopolaric EquivalentPLPolopolaric EquivalentPARSCPolopolaric EquivalentPMFSCPolopolaric EquivalentPMFSCNaterial repected by suspension or deposit feeders as potential food before entering tegutaryPSPPartic Shafini PoisoningPSUPartic Shafini PoisoningPSUPartic Shafini Poisoning international conference, held in 1971 in Ramser in Iring to the Type International importance, especially as waterfood held in Iring tegutary international importance, especially as waterfood held in Iring target international importance, especially as waterfood held in Iring tegutary international importance, especially as waterfood hel	NO ₂	Nitrite
NRFA National River Flow Archive NRL National River Flow Archive NRL National Reference Laboratory OSPAR OsloyParis convention (for the Protection of the Marine Environment of the Northe East Atlanuc Park Nosphorus PAH Poloyclic convention (for the Protection of the Marine Environment of the Northe East Atlanuc PAH Poloyclic convention (for the Protection of the Marine Environment of the Northe East Atlanuc PAH Poloyclic convention (for the Protection of the Marine Environment of the Northe East Atlanuc PAH Poloyclic convention (for the Protection of the Marine Environment of the Northe East Atlanuc PAH Poloyclic convention (for the Protection of the Marine Environment of the Northe East Atlanuc PAH Poloyclic convention (for the Protection of the Marine Environment of the Northe East Atlanuc PAH Poloyclic convention (for the Protection of the Marine Environment of the Northe East Atlanuc PAR Poloyclic convention (for the Protection of the States Marine Fisheries Commission (for guice PAR Poloyclic convention (for the Protection of the States Marine Fisheries Commission (for guice PSP Poloyclic convention (for the Protection of the Protection of the Protection of the Protection of the Protection (for the Protection of the Protection (for the Protection of the Protection (for the Protection of t	NO ₃	Nitrate
NRL National Reference Laboratory OSPAR Oslo/Paris convention (for the Protection of the Marine Environment of the Northe East Attanto) East Attanto) East Attanto) P Phosphart Environment of the Northe East Attanto) PAH Phosphart Environment of the Northe Environment of the Northe East Attanto) PAH Phosphart Environment of the Northe Northe Environment of the Northe Environm	NoV	Norovirus
OSPAR Oslo/Paris convention (for the Protection of the Marine Environment of the Northe East Atlantic) P Poloporus PAH Poloporus Construct Hydrocarbons Pathogenic Oslo/Pariated Biphenyls PCP Poloporus Construct Biphenyls PCP Poloporus Construct Biphenyls PAHSO Poloporus Construct Biphenyls PARSO Poloporus Construct Biphenyls PCP Poloporus Construct Biphenyls PARSO Poloporus Construct Biphenyls PARSO Poloporus Construct Biphenyls PARSO Poloporus Construct Biphenyls Poloporus Construct Biphenyls Poloporus Construct Biphenyls PARSO Poloporus Construct Biphenyls Poloporus Construct Biphenyls	NRFA	National River Flow Archive
Pi Fish Hardingen (Ping) PAH Polycyclic Aromatic Hydrocarbons PAH Olycyclic Aromatic Hydrocarbons Pathogenic Olycyclic Aromatic Hydrocarbons PCB Olycyclic Aromatic Hydrocarbons PCP Polyclic Total Biphenyls PLA Olycyclic Aromatic Hydrocarbons (Ping) PARSO Polyclic Total Biphenyl PSO Polyclic Total Biphenyl Bip	NRL	National Reference Laboratory
P Pinspinum PAH Pinspinum Pathogenic Capabe causing disease PCB Polychoroted Biphenyls PCP Polychoroted Biphenyls PLP Polychoroted Biphenyls PARKon/Planktom Polyation Equivalent PARKon/Planktom Polyation Equivalent PMFSC Parkorizets Marine Fisheries Commission PSP Parkorizets Parkoning PSP Parkorizets Parkoning PSP Parkorizets Parkoning PSP Parkorizets Parkoning an international conference, held in 1971 in Ramsar in Irang in international importance, especially any autorizet parkoning PSP Parkorizet Parkoning any autorizet parkoning any a	OSPAR	Oslo/Paris convention (for the Protection of the Marine Environment of the North-
PAH Pidycia Caromatic Hydrocarbons Pathogenic Capabe of causing disease PCB Polycia of ausing disease PCP Polycia of Biphenyls PcP Pontator Biphenyls Pankton/Planktonic Portator Equivalent PMFSC Portator States Marine Fisheries Commission PSP Materiar ejected by suspension or deposit feeders as potential food before entering to august PSP Paratyci Shellish Poisoning PSP Paratyci Shellish Poisoning PSN Paratyci Shellish Poisoning to august protection and poist and poist protection and poist poist protection and poist poist protection and poist pois		East Atlantic)
PathogenicCapabe of causing diseasePCBPolychlorionated BiphenylsPCPPentachophenolp.e.Population EquivalentPlankton/PlanktonicPertaining to small, free-floating organisms of aquatic systemsPMFSCPacific States Marine Fisheries CommissionPseudofaecesMaterial rejected by suspension or deposit feeders as potential food before entering the gut.PSPParalytic Shellfish PoisoningPSUPractical Silnity UnitsRAMSARA terral apped following an international conference, held in 1971 in Ramsar in Iran to identify wetland sites of international importance, especially as waterfood held terratRegulation (EC) SSUKEGULATION (EC) No 854/2004 OF THE EUROPEAN PARLIAMENT AND OF	Р	Phosphorus
PCB Polychloronated Biphenyls PCP Pentachlorophenol p.e. Population Equivalent Plankton/Planktonic Pertaining to small, free-floating organisms of aquatic systems PMFSC Pacific States Marine Fisheries Commission Pseudofaeces Material rejected by suspension or deposit feeders as potential food before entering the gut. PSP Paralytic Shellfish Poisoning PSU Practical Salinity Units RAMSAR A term active following an international conference, held in 1971 in Ramsar in Iran, to identify wetland sites of international importance, especially as waterfoul habitat. Regulation (EC) 854/2004 KEGULATION (EC) No 854/2004 OF THE EUROPEAN PARLIAMENT AND OF	РАН	Polycyclic Aromatic Hydrocarbons
PCP Pentachorophenol p.e. Populationphenol Plankton/Planktonic Pertaining to small, free-floating organisms of aquatic systems PMFSC Pacific States Marine Fisheries Commission Pseudofaeces Material rejected by suspension or deposit feeders as potential food before entering the gut. PSP Paralytic Shellfish Poisoning PSU Practical Subjected following an international conference, held in 1971 in Ramsar in Iran, to identify wetland sites of international importance, especially as waterfowl habitat. Regulation (EC) 855/2004 KEGULATION (EC) No 854/2004 OF THE EUROPEAN PARLIAMENT AND OF	Pathogenic	Capable of causing disease
p.e.Population EquivalentPlankton/PlanktonicPertainbaring organisms of aquatic systemsPMFSCPacific States Marine Fisheries CommissionPseudofaecesMateri = jected by suspension or deposit feeders as potential food before entering the gut.PSPParalytic Shellfish PoisoningPSUPractic Statist UnitsRAMSARA term = opted following an international conference, held in 1971 in Ramsar in Iran, to identificational sites of international importance, especially as waterfood held to the sites of international importance, especially as waterfood held to the sites of international importance, especially as waterfood held to the sites of international importance, especially as waterfood held to the sites of international importance, especially as waterfood held to the sites of international importance, especially as waterfood held to the sites of international importance, especially as waterfood held to the sites of international importance, especially as waterfood held to the sites of international importance, especially as waterfood held to the sites of international importance, especially as waterfood held to the sites of international importance, especially as waterfood held to the sites of international importance is especially as waterfood held to the sites of international importance is especially as waterfood held to the sites of international importance is especially as waterfood held to the sites of international importance is especially as waterfood held to the site of international importance is especially as waterfood held to the site of international importance is especially as waterfood held to the site of international importance is especially as waterfood held to the site of international importance is especially as waterfood held to the site of international importance is especially as waterfood held to the site of intern	РСВ	Polychlorionated Biphenyls
Plankton/Planktonic Pertaining to small, free-floating organisms of aquatic systems PMFSC Pacific States Marine Fisheries Commission Pseudofaeces Material rejected by suspension or deposit feeders as potential food before entering the gut. PSP Paralytic Shellfish Poisoning PSU Practical Salinity Units RAMSAR A term adopted following an international conference, held in 1971 in Ramsar in Iran, to identify wetland sites of international importance, especially as waterfowl habitat. Regulation (EC) 854/200V REGULATION (EC) No 854/2004 OF THE EUROPEAN PARLIAMENT AND OF	РСР	Pentachlorophenol
PMFSC Pacific States Marine Fisheries Commission Pseudofaeces Material rejected by suspension or deposit feeders as potential food before entering the gut. PSP Paralytic Shellfish Poisoning PSU Practical Salinity Units RAMSAR A term adopted following an international conference, held in 1971 in Ramsar in Iran, to identify wetland sites of international importance, especially as waterfowl habitat. Regulation (EC) 854/2004 REGULATION (EC) No 854/2004 OF THE EUROPEAN PARLIAMENT AND OF	p.e.	Population Equivalent
Pseudofaeces Material rejected by suspension or deposit feeders as potential food before entering to be positive supervised as potential food before entering to be positive supervised as positive supervised	Plankton/Planktonic	Pertaining to small, free-floating organisms of aquatic systems
the gut. PSP Paralytic Shellfish Poisoning PSU Practical Salinity Units RAMSAR A term adopted following an international conference, held in 1971 in Ramsar in Iran, to identify wetland sites of international importance, especially as waterfowl habitat. Regulation (EC) 854/2004 REGULATION (EC) No 854/2004 OF THE EUROPEAN PARLIAMENT AND OF	PMFSC	Pacific States Marine Fisheries Commission
PSP Paralytic Shellfish Poisoning PSU Practical Salinity Units RAMSAR A term adopted following an international conference, held in 1971 in Ramsar in Iran, to identify wetland sites of international importance, especially as waterfowl habitat. Regulation (EC) 854/2004 REGULATION (EC) No 854/2004 OF THE EUROPEAN PARLIAMENT AND OF	Pseudofaeces	Material rejected by suspension or deposit feeders as potential food before entering
PSU Practical Salinity Units RAMSAR A term adopted following an international conference, held in 1971 in Ramsar in Iran, to identify wetland sites of international importance, especially as waterfowl habitat. Regulation (EC) 854/2004 REGULATION (EC) No 854/2004 OF THE EUROPEAN PARLIAMENT AND OF		the gut.
RAMSARA term adopted following an international conference, held in 1971 in Ramsar in Iran, to identify wetland sites of international importance, especially as waterfowl habitat.Regulation (EC) 854/2004REGULATION (EC) No 854/2004 OF THE EUROPEAN PARLIAMENT AND OF	PSP	Paralytic Shellfish Poisoning
to identify wetland sites of international importance, especially as waterfowl habitat. Regulation (EC) 854/2004 REGULATION (EC) No 854/2004 OF THE EUROPEAN PARLIAMENT AND OF	PSU	Practical Salinity Units
Regulation (EC) 854/2004 REGULATION (EC) No 854/2004 OF THE EUROPEAN PARLIAMENT AND OF	RAMSAR	A term adopted following an international conference, held in 1971 in Ramsar in Iran,
		to identify wetland sites of international importance, especially as waterfowl habitat.
THE COUNCIL of 29 April 2004 laying down specific rules for the organisation of	Regulation (EC) 854/200	REGULATION (EC) No 854/2004 OF THE EUROPEAN PARLIAMENT AND OF
		THE COUNCIL of 29 April 2004 laying down specific rules for the organisation of
official controls on products of animal origin intended for human consumption		official controls on products of animal origin intended for human consumption
RIB Rigid Inflatable Boat	RIB	Rigid Inflatable Boat
RMP Representative Monitoring Point	RMP	Representative Monitoring Point
RNA Ribonucleic Acid	RNA	Ribonucleic Acid
	SAC	Special Area of Conservation
SAC Special Area of Conservation	SFPA	Sea Fisheries Protection Authority
	SMILE	Sustainable Mariculture in northern Irish Lough Ecosystems
SAC Special Area of Conservation	SFPA	Sea Fisheries Protection Authority
	SMILE	Sustainable Mariculture in northern Irish Lough Ecosystems
SFPA Sea Fisheries Protection Authority		

SOA	Super Output Areas or ward
SPA	Special Protection Area
SPM	Suspended particulate Matter
SPS	Sewage Pumping Station
SS	Suspended Solids
STW	Sewage Treatment Works
Suspension feeders	Animals that feed on small particles suspended in water
твто	Tributyl Tin Oxide
Telemetry	The measurement and transmission of data from remote sources to receiving
	stations for recording and analysis
ТРР	Total Physical Product
UKAS	United Kingdom Accreditation Service
UKHO	United Kingdom Hydrographic Office
Vector	A carrier, which transmits a disease from one party to another
WeBS	Wetland Bird Survey
WTP	Water Treatment Plant
WWTW	Waste Water Treatment Works

1. Introduction

Consumption of raw or lightly cooked bivalve molluscs can results in illness due to the presence of microorganisms, many of which are derived from faecal contamination of the marine environment. Shellfish contaminated with pathogenic microorganisms may cause infectious disease in humans and such outbreaks are more likely to occur close to our coasts where production areas are impacted by sources of human and animal faecal contamination.

The risk of contamination of bivalve molluscs with pathogen microorganisms is assessed through microbiological monitoring programmes. This assessment results in the classification of bivalve mollusc production areas, which in turn governs the level of treatment required before human consumption of the shellfish.

Under EU regulations sanitary surveys of bivalve mollusc production areas and their associated hydrological catchments and coastal waters are required in order to establish the appropriate representative monitoring points for these monitoring programmes.

Specifically under regulation (EU) 2017/625 and its subsequent implementing regulation (EU) 2019/627 there is a requirement to carry out a sanitary survey before classifying any shellfish production or relaying area. Article 56 of Implementing Regulation 627 of 219 states:

- 1. Before classifying a production or relaying area, the competent authorities shall carry out a sanitary survey that includes:
- an inventory of the sources of pollution of human or animal origin likely to be a source of contamination for the production area;
- an examination of the quantities of organic pollutants released during the different periods of the year, according to the seasonal variations of human and animal populations in the catchment area, rainfall readings, waste-water treatment, etc.;
- determination of the characteristics of the circulation of pollutants by virtue of current patterns, bathymetry and the tidal cycle in the production area.
- 2. The competent authorities shall carry out a sanitary survey fulfilling the requirements set out in paragraph 1 in all classified production and relaying areas, unless carried out previously.

3. The competent authorities may be assisted by other official bodies or food business operators under conditions established by the competent authorities in relation to the performance of this survey.

Currently the Sea Fisheries Protection Authority in conjunction with AQUAFACT International Services Ltd are conducting sanitary surveys for new bivalve mollusc production areas and for those existing classified production areas which were previously not surveyed.

This report contains the documents relevant to the sanitary survey of the bivalve mollusc production area at Sligo Harbour, County Sligo. It identifies the representative monitoring points and supporting sampling plans for pacific oysters in Sligo Harbour. It also sets out the production area boundaries in the Bay.

2. Overview of the Fishery/Production Area

2.1. Description of the Area

Sligo Harbour BMCPA is located along the north western coast of Ireland and is one of three small bays within Sligo Bay. Sligo Harbour is an 18.5km² shallow tidal bay with extensive mud and sand flats extending from Sligo town in the east to Coney Island in the west. The area is approximately 6.6km E-W at its widest point and approximately 3.2km N-S. The catchment area of the BMCPA is 448km² and the main freshwater source from this catchment is the Garavogue River which flows through Sligo town. To the south of oyster Island there is a deep pool which is 20.4m at its deepest.

The majority of the bay is made up of intertidal sand and mudflats. A navigational channel runs from Sligo Town out towards Oyster Island following the northern shore with a retaining wall as far as Ballyweelin Point. Depths within the navigational channel vary from approximately 1 to 10m.

Sligo Harbour is designated as part of a Special Area of Conservation (SAC); Cummeen Strand/Drumcliff Bay (Sligo Bay) SAC (Site Code: IE000627) (see Figure 2.1) due to the presence of a number of important habitats and species. Sligo Harbour is also designated as a Special Protection Area (SPA): Cummeen Strand SPA (IE004035) (see Figure 2.1). The site is designated because of the presents of a number of important bird species, see section 3.1.6 for details.

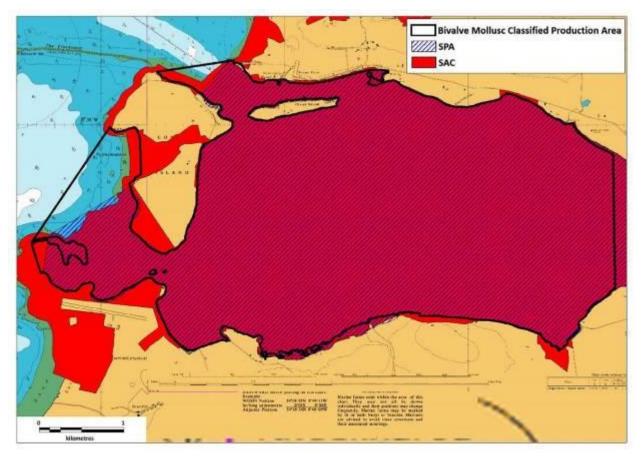
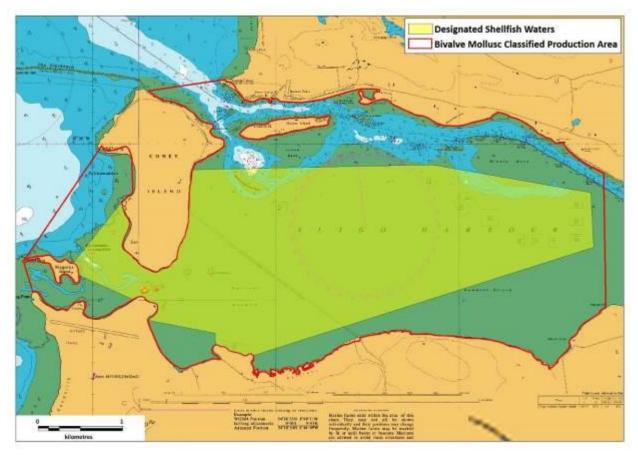


Figure 2.1: Location of Natura 2000 sites overlapping with the Sligo Harbour BMCPA.

The Sligo Harbour BMCPA supports a diversity of fish species. Species present include bass, mackerel, sea trout and flounder (IFI, 2019).

Land cover within the Sligo Harbour catchment is a mixture of land principally occupied by agriculture, with significant areas of natural vegetation, pastures, peat bogs, transitional woodland-shrub, moors and heathland, coniferous forest, intertidal flats, natural grasslands, broad-leaved forest, discontinuous urban fabric and mixed forest.


The population of the catchment is approximately 28,966. The main towns/urban centres within the catchment are Sligo town, Strandhill, Manorhamilton, Rosses Point, Dromahair and Ballintogher.

2.2. Sligo Harbour Fishery

2.2.1. Location/Extent of Growing/Harvesting Area

The shellfish designated waters in Sligo Harbour cover an area of approximately 8.55km² and the Bivalve Mollusc Classified Production Area (BMCPA) covers c. 15.66km². Both can be seen in Figure 2.2. Oyster cultivation is predominant in Sligo Harbour.

Figure 2.2: Bivalve Mollusc Classified Production Area and Designated Shellfish Waters within Sligo Harbour.

Figure 2.3 shows the current locations of licenced aquaculture sites within Sligo Harbour. The majority of the clam sites are located on the sand flats south of the Middle Bank with the exception of one site located on the south shore close to the Sligo airport runway. Currently none of these clam sites are active with marketable product.

The oyster license sites are located on the intertidal sandflats south of the Middle Bank extending westwards towards the Yellow Bank. There are two other oyster licences on the southern shore near Dorrin's Strand and the airport runway respectively. Approximately 80% of the licenses are for oysters (0.52km²) and 20% for clams (0.13km²).

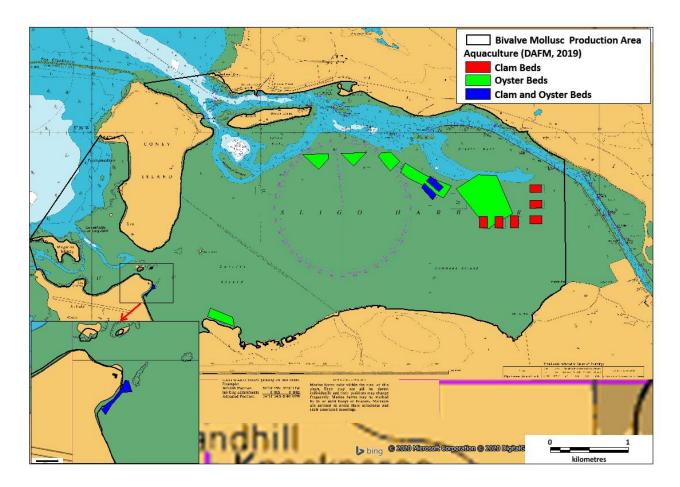


Figure 2.3: Licenced aquaculture sites within Sligo Harbour (Source: DAFM, 2019).

2.2.2. Description of Species

2.2.2.1. Pacific Oysters (Crassostrea gigas)

Distribution

Figure 2.4 shows the locations of licenced intertidal farmed Pacific oyster sites in Sligo Harbour. These farmed sites cover an area of 0.52km². The farms in Sligo Harbour are located on the intertidal mudflats south of the Middle Bank and extend westwards towards the Yellow Bank. There are two oyster sites in the south western end of the bay.



Figure 2.4: Licenced Pacific oyster harvesting sites in Sligo Harbour (Source: DAFM, 2019).

Fishery

Intertidal oyster culture is carried out in bags on trestles in the intertidal zone. Depending upon the size of stock, the number of oyster in each bag will vary with lower numbers in bags with larger oysters.

2.2.2.2. Clams

Distribution

Figure 2.5 shows the licensed clam sites in Sligo Harbour. These farmed sites cover an area of 0.13km². The farms in Sligo Harbour are located on the intertidal intertidal mudflats south of the Middle Bank. There is one clam site on the southern shore close to the airport.

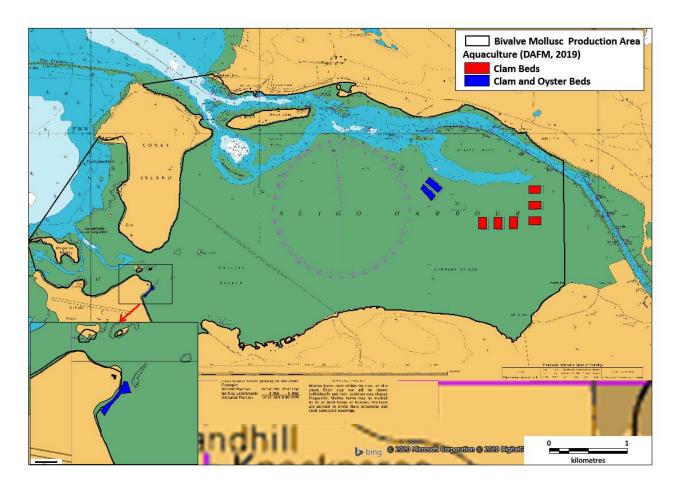


Figure 2.5: Licenced clam harvesting sites in Sligo Harbour (Source: DAFM, 2019).

Fishery

Due to historic mortality issues there is currently no active clam fishery in the production area.

3. Identification of Pollution Sources

This section attempts to document all pollution sources within the Sligo Harbour catchment area.

3.1. Desktop Survey

Pollution sources were considered within the catchment area of Sligo Harbour (see Figure 3.1). The catchment area covers an area of 448km², approximately 34km east west at its widest point and 28km north south at its longest point.

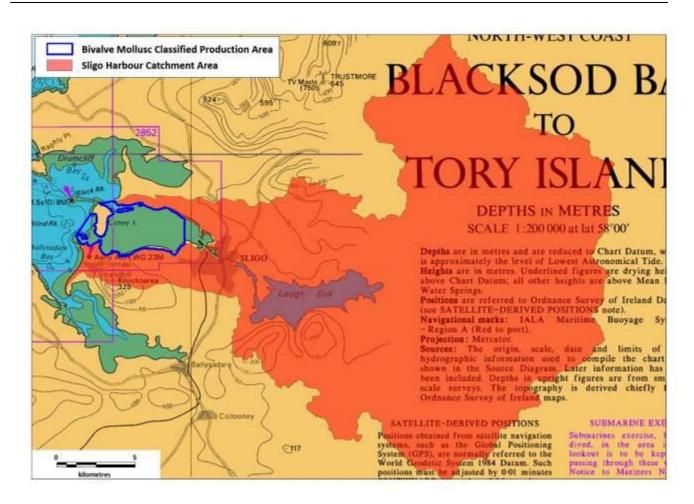


Figure 3.1: Sligo Harbour catchment area used for assessment of the pollution sources.

3.1.1. Human Population

Figure 3.2 shows all of the counties which fall within the Sligo Harbour catchment area: Sligo and Leitrim. Population census data used by the Central Statistics Office (CSO) is given in units of Electoral Divisions (ED). Figure 3.3 shows the EDs within the catchment areas. The population data was obtained through the Central Statistics Office (CSO) online Small Area Population Statistics (SAPS) (CSO, 2019a) for the year 2016. Town populations are not yet available for the 2016 Census therefore the 2011 Census data was used. Figure 3.4 shows the human population within Sligo Harbour catchment area and Table 3.1 shows these data in tabular form.

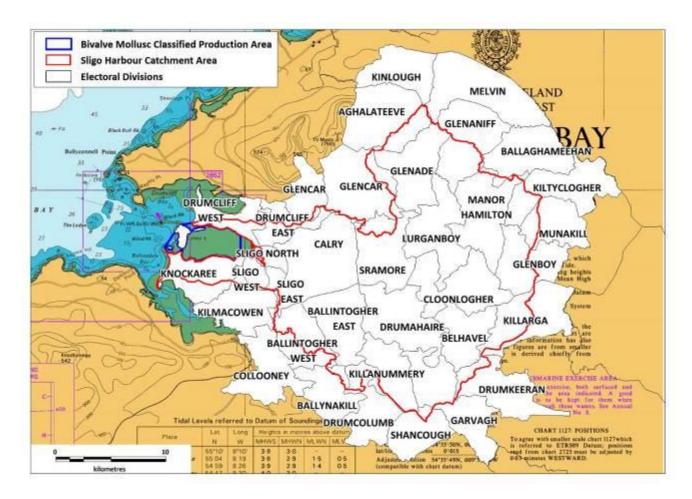



Figure 3.2: Counties within the Sligo Harbour Catchment Area.

Figure 3.3: Electoral Divisions within the Sligo Harbour Catchment Area.

The Sligo Harbour Catchment Area overlaps 35 ED's (five in their entirety and 30 partially). The following ED's are entirely within the catchment Belhavel, Cloonlogher, Drumahaire, Lurganboy and Sligo North. The ED's that are partially within the catchment are Aghalateeve/Aghanlish, Ballaghameehan, Ballintogher East, Ballintogher West, Ballynakill, Calry, Collooney, Drumcliff East, Drumcliff West, Drumcolumb, Drumkeeran, Garvagh/Arigna, Glenade, Glenaniff, Glenboy, Glencar (Sligo), Glencar (Leitrim), Killanummery, Killarga, Kilmacowen, Kiltyclogher, Kinlough, Knockaree, Manorhamilton, Melvin, Munakill, Shancough, Sligo East, Sligo West, Sramore. Sligo town with its three ED's (West, North and East) contains by far the largest population (17,439) followed by Knockaree (3,690), Collooney (2,742) and Kilmacowen (2,161).

These 35 ED's accommodate a total population of 41,212. As most of these ED's only partially overlap the catchment area, an attempt was made to estimate the actual population within the catchment. The percentage of the ED lying within the catchment was calculated in GIS and from this value the population size was calculated *e.g.* if 50% of ED lies within catchment area then 50% of the total population was taken to be the population size of the area within the catchment. Using this method, the population of the catchment areas is estimated at 28,966 people. Table 3.1 shows this estimation.

There are six main towns/urban centres within the catchment area. Four (Sligo Town, Strandhill, Rosses Point and Ballintogher) are located in county Sligo and two (Manorhamilton and Dromahair) are located county Leitrim. Sligo town (19,452) has by far the largest population, followed by Strandhill (1,596), Manorhamilton (1,336), Rosses Point (824), Dromahair (748) and Ballintogher (313).

There are 20,470 households within the 35 ED's within the catchment area. Of this, 14% are vacant (2968) and a further 3% are holiday homes (596). Of the 14,521 houses actually within the catchment (based on the % of the ED within the catchment), 14% are vacant and 2% are holiday homes. Table 3.2 shows the number of households in each ED and the proportion actually within the catchment area.

Human population in given areas is obtainable from census data; however, relating this information to the level of microbial contamination in coastal waters is difficult and is constrained by the geographic boundaries used. Nonetheless, it is clear that areas with a higher population will have higher levels of sewage and wastewater entering the Sligo Harbour system. Therefore, the highest levels of sewage and waste would be expected to enter through the Garavogue River which drains 89% of the catchment, with the majority coming from Sligo Town which accounts for 67% of the catchments population. As holiday homes only account for 2% of the dwellings in the catchment they are unlikely to cause a significant increase in the sewage and waste water levels relative to the permanent population.

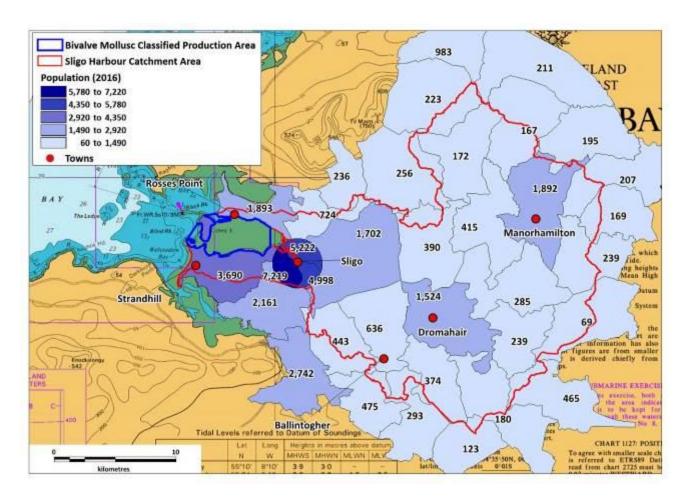


Figure 3.4: Human population within the Sligo Harbour Catchment Area (Source: CSO, 2019a).

Table 3.1: Human population	within the Sligo Harbour	Catchment Area (Source: CSO, 2019a).
-----------------------------	--------------------------	--------------------------------------

Electoral Division	Population (2016)	% ED in Catchment	Estimated Population	
Aghalateeve	223	21.0	47	
Ballaghameehan	195	3.1	6	
Ballintogher East	636	99.9	636	
Ballintogher West	443	58.7	260	
Ballynakill	475	9.3	44	
Belhavel	239	100.0	239	
Calry	1702	98.6	1678	
Cloonlogher	285	100.0	285	
Collooney	2742	0.1	2	
Drumahaire	1524	100.0	1524	
Drumcliff East	724	60.2	436	
Drumcliff West	1893	40.5	767	
Drumcolumb	293	17.6	52	
Drumkeeran	465	12.6	59	
Garvagh	180	48.6	87	
Glenade	172	98.8	170	
Glenaniff	167	39.1	65	

Electoral Division	Population (2016)	% ED in Catchment	Estimated Population	
Glenboy	239	60.9	145	
Glencar (Leitrim)	256	16.6	43	
Glencar (Sligo)	236	3.9	9	
Killanummery	374	93.5	350	
Killarga	69	41.7	29	
Kilmacowen	2161	6.7	145	
Kiltyclogher	207	23.2	48	
Kinlough	983	0.0	0	
Knockaree	3690	58.5	2160	
Lurganboy	415	100.0	415	
Manorhamilton	1892	96.1	1818	
Melvin	211	0.2	0	
Munakill	169	20.6	35	
Shancough	123	6.4	8	
Sligo East	4998	98.3	4914	
Sligo North	5222	100.0	5222	
Sligo West	7219	96.1	6938	
Sramore	390	85.0	332	

November 2020

Electoral Division	Total Households	No. Occupied*	Unoccupied holiday	Vacant houses	Total Households	No. Occupied	Unoccupied holiday	Vacant houses in
		-	homes		in	in	homes in	Catchment
					Catchment	Catchment	Catchment	
Aghalateeve	133	87	5	41	28	18	1	9
Ballaghameehan	118	83	22	13	4	3	1	0
Ballintogher East	276	235	6	35	276	235	6	35
Ballintogher West	167	144	7	16	98	84	4	9
Ballynakill	191	161	5	25	18	15	0	2
Belhavel	160	108	5	47	160	108	5	47
Calry	774	684	21	69	763	674	21	68
Cloonlogher	159	118	8	33	159	118	8	33
Collooney	1381	1063	14	304	1	1	0	0
Drumahaire	815	595	61	159	815	595	61	159
Drumcliff East	322	295	3	24	194	178	2	14
Drumcliff West	845	697	71	77	342	282	29	31
Drumcolumb	133	107	8	18	23	19	1	3
Drumkeeran	311	203	7	101	39	26	1	13
Garvagh	100	64	7	29	49	31	3	14
Glenade	91	64	12	15	90	63	12	15
Glenaniff	107	68	18	21	42	27	7	8
Glenboy	112	91	3	18	68	55	2	11
Glencar (Leitrim)	124	94	9	21	21	16	1	3
Glencar (Sligo)	95	88	2	5	4	3	0	0
Killanummery	161	135	5	21	151	126	5	20
Killarga	46	30	1	15	19	13	0	6
Kilmacowen	894	832	7	55	60	56	0	4

Table 3.2: Households within the EDs in the Sligo Harbour Catchment Areas (Source: CSO, 2019a).

November 2020

Electoral Division	Total	No.	Unoccupied	Vacant	Total	No.	Unoccupied	Vacant
	Households	Occupied*	holiday	houses	Households	Occupied	holiday	houses in
			homes		in	in	homes in	Catchment
					Catchment	Catchment	Catchment	
Kiltyclogher	146	101	8	37	34	23	2	9
Kinlough	506	372	33	101	0	0	0	0
Knockaree	1657	1467	89	101	970	859	52	59
Lurganboy	198	162	10	26	198	162	10	26
Manorhamilton	1044	806	43	195	1003	774	41	187
Melvin	157	98	32	27	0	0	0	0
Munakill	97	71	15	11	20	15	3	2
Shancough	73	49	7	17	5	3	0	1
Sligo East	2430	2114	14	302	2389	2078	14	297
Sligo North	2828	2318	6	504	2828	2318	6	504
Sligo West	3649	3162	23	464	3507	3039	22	446
Sramore	170	140	9	21	145	119	8	18
Total	20470	16906	596	2968	14521	12137	330	2055

* This figure includes those houses temporarily unoccupied on census night.

3.1.2. Tourism

In 2017, 2.4 million tourists visited the Border Region of Ireland (Failte Ireland, 2018a). This figure was made up of 746,000 overseas tourists, 1,000,000 domestic tourists and 648,000 Northern Irish tourists. Of the overseas tourists, 173,000 visited Co. Sligo and 41,000 visited Co. Leitrim, and of the domestic tourists 247,000 visited Co. Sligo and 206,000 visited Co. Leitrim (Failte Ireland, 2018b). The main tourist attractions in the area are Knocknarea, Sligo Abbey, Lough Gill, Benbulben, Rossess Point, Lissadell House, Strandhill Beach and The Devils Chimney in Co. Sligo, along with Glencar waterfall and Parke's Castle in Co. Leitrim.

The attractions located inside the catchment area include: Knocknarea, Sligo Abbey, Lough Gill, Rosses Point, Strandhill Beach and Parke's Castle. For Ireland as a whole, in 2017 most tourists visited between July and September (31%), followed by April to June (27%), October to December (23%) and January to March (18%). There is no reason to expect this trend to be any different in the Border region.

Several operators use the natural amenities in and adjacent to Sligo Harbour as a focal point for their aquatourism businesses. Two sea angling and charter vessels (Sea Fishing Sligo and Ewing Sea Angling and Boat Charters) operate out of Rosses Point. There are two companies operating guided boat tours of the area one operates in Lough Gill (Rose of Innisfree) and the other provides a wide range of tours along the coast including Inishmurray Island (Wild West Sailing). Sligo Kayaking tours provide tours of both Lough Gill and along the coastline including Sligo Harbour. There are also two Surf schools at Strandhill, Sligo Yacht Club at Rosses Point and Seatrails which provided guided walking tours of the area including Knocknarea and Rosses Point.

In addition to the above there is also a number of beaches located along the shore of Sligo Harbour, Sligo Airport at Strandhill and a number of piers, quays and slips which provide sea access.

Increases in population in the local area due to tourism may result in an increase in the quantity of sewage discharged within the Sligo Harbour catchment area. In addition, Papadakis *et al.* (1997) found significant correlations between the number of swimmers present on beaches and the presence of pathogenic bacteria. In 2007, Elmir *et al.* (2007) showed the role of human skin as an intermediate mechanism of pathogen transmission to the water column. The only monitored swimming area near the production area is Rosses Point beach, which is a Blue Flag beach. Swimming is prohibited at Strandhill beach and is only used for water sports such as canoeing, windsurfing, kite surfing and surfing. Rosses Point is monitored for water quality by the EPA and has been classified as excellent for 2015, 2016 and 2017. No water quality

data was available for Strandhill.

3.1.3. Sewage Discharges

3.1.3.1. Water Treatment Works

There are seven waste water or sewage treatment works within the Sligo Harbour catchment, three of which discharge directly to the sea (Sligo, Rosses Point and Strandhill) and the remaining four discharge to rivers within the catchment (Ballintogher, Killarga, Dromahair and Manorhamilton). Figure 3.5 shows all 7 Treatment Works within the Sligo Harbour catchment area and Table 3.3 shows the coordinates and facility capacities of each works (EPA, 2019a).

3.1.3.2. Continuous Discharges

Strandhill WWTP is a secondary treatment facility with a design capacity of 1500 PE (Population Equivalent) and is currently over capacity at 2,371 PE. The maximum discharge for this facility is 3,038 m³/day. Rosses Point WWTP is a primary treatment facility with a design capacity of 1,500 PE and is currently over capacity at 1,568 PE; at the time of writing there was no data for the maximum discharge from this facility. Sligo WWTP is a tertiary P removal facility with a design capacity of 50,000 PE and is currently under capacity at 28,158 PE; the maximum discharge for this facility is 37,500 m³/day. Ballintogher & Environs WWTP is a secondary treatment facility with a design capacity of 350 PE and is currently over capacity at 360 PE and the maximum discharge for this facility is 143 m³/day. Dromahair WWTP is a tertiary P removal facility with a design capacity of 2,200 PE and is currently below capacity at 1,349 PE. At the time of writing, there were no data for the maximum discharge from this facility. Killarga WWTP is a secondary treatment facility with a design capacity of 200 PE and is currently under capacity at 109 PE. The maximum discharge for this facility is 59 m³/day. Manorhamilton WWTP is a tertiary P removal facility with a design capacity of 3,500 PE and is currently under capacity at 2,557 PE and the maximum discharge for this facility is 2,830 m³/day. The locations of the discharges can be seen in Figure 3.6 and Table 3.4 provides details of the discharge. Strict emissions limits are set out in the discharge Licences for each facility in terms of BOD (Biological Oxygen Demand), Ortho-Phosphate, Suspended Solids, Nitrogen and Ammonia. These emissions limits comply with the parameters of Shellfish Directive (2006/113/EC) and the Quality of Shellfish Waters Regulations 2006.

The pollution reduction program for Sligo Bay recorded 3,908 on-site waste water treatment systems within the catchment and there density is higher than the national average. Using the average household size of 2.75 individuals gives 10,747 people on private treatment systems. Whereas, there are 36,472 people on the public sewer/treatment system.

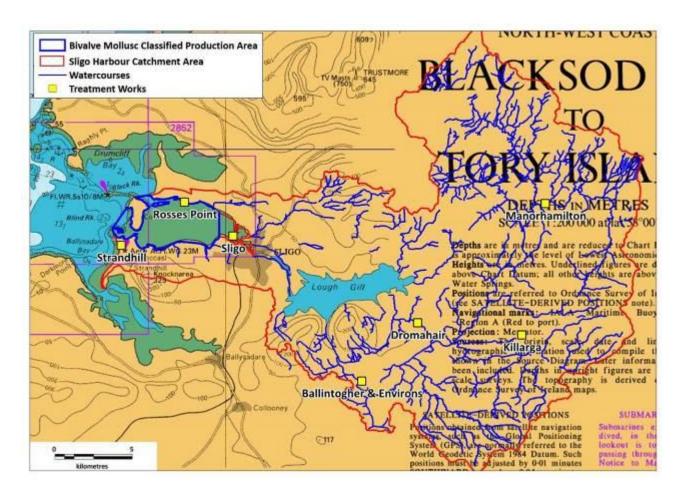


Figure 3.5: Sewage Treatment Works within the Sligo Harbour Catchment Area (Source: The EPA, 2019a).

Name	Easting	Northing	Longitude	Latitude	p.e.	Designed p.e.
Strandhill	160611	336834	-8.60469	54.27862	2371	1500
Rosses Point	164707	339575	-8.54214	54.30354	1568	1500
Sligo	167816	337374	-8.49415	54.28397	28158	50000
Ballintogher & Environs	176069	328000	-8.36669	54.20021	360	350
Dromahair	179695	331717	-8.31138	54.23376	1349	2200
Killarga	186411	330910	-8.20835	54.22673	109	200
Manorhamilton	187950	339360	-8.1851	54.30268	2557	3500

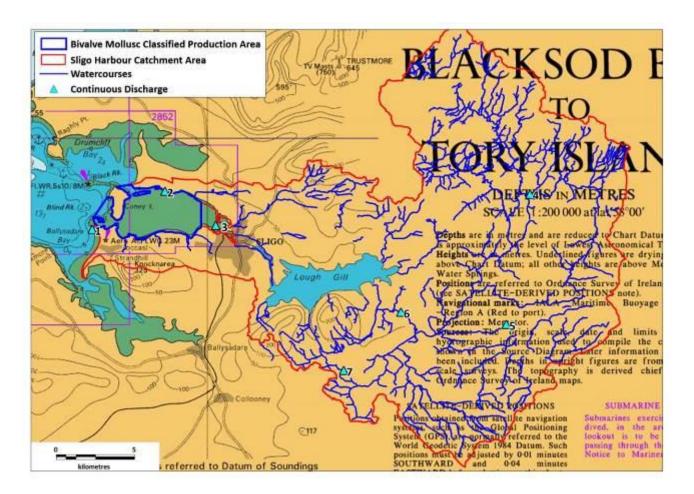


Figure 3.6: Continuous Discharges associated with the Sewage Treatment Works within the Sligo Harbour Catchment Area (Source: The EPA, 2019a).

Map Code	Name	Treatment	Easting	Northing	Longitude	Latitude	Receiving Body	Max Discharge/ day (m3)	DWF/ day (m3)
1	Strandhill	2 - Secondary Treatment	160057	337116	-8.61401	54.2813	Sligo Bay	3,038	336.96
2	Rosses Point	1 - Primary Treatment	164692	339511	-8.54313	54.30315	Sligo Harbour	N/A	N/A
3	Sligo	3P - Tertiary P Removal	167889	337373	-8.49309	54.28366	Garavogue Estuary	37,500	12,500
4	Ballintogher & Environs	2 - Secondary Treatment	176033	328012	-8.36801	54.20051	Tiratick River	143	47.52
5	Dromahair	3P - Tertiary P Removal	179697	331702	-8.31212	54.23382	Bonet River	N/A	N/A
6	Killarga	2 - Secondary Treatment	186435	330892	-8.20876	54.22677	Unnamed Stream	59	19.6
7	Manorhamilton	3P - Tertiary P Removal	187964	339214	-8.18565	54.30157	Owenmore River	2,830	501.12

Table 3.4: Continuous Discharges within the Sligo Harbour Catchment area (Source: EPA, 2019a). Map Codes refer to Figure 3.6.

3.1.3.3. Rainfall Dependent / Emergency Sewage Discharges

In addition to WWTPs having a continuous discharge pipe, they also have intermittent or rainfall dependent discharge pipes in the form of storm water overflows. During storm flows in excess of a predetermined flow rate, the excess will bypass the works and flow directly to the outfall via the storm overflow discharge pipes. The details for the intermittent discharges can be seen in Table 3.5 and their locations can be seen in Figure 3.7.

Table 3.5: Rainfall dependent discharges (storm water overflows) within the Sligo Harbour Catchment area (Source:EPA, 2019a). Map Codes refer to Figure 3.7.

Мар	Name	Discharge	Easting	Northing	Longitude	Latitude	Receiving Body
Code		Point Code					
1	Strandhill	SW002	160057	337116	-8.61401	54.2813	Sligo Bay
2	Rosses Point	SW002	164016	339696	-8.56006	54.30454	Sligo Harbour
3	Rosses Point	SW003	163880	339765	-8.55564	54.30538	Sligo Harbour
4	Rosses Point	SW004	163591	339674	-8.55354	54.30477	Sligo Harbour
5	Sligo	SW002	168467	336877	-8.48487	54.27974	Garavogue Estuary
6	Sligo	SW003	168981	336273	-8.48532	54.27891	Garavogue Estuary
7	Sligo	SW004	169678	335970	-8.48532	54.27891	Garavogue Estuary
8	Sligo	SW005	169351	335978	-8.47692	54.27435	Garavogue Estuary
9	Sligo	SW0010	168437	336785	-8.47121	54.27172	Garavogue Estuary
10	Sligo	SW0015	168437	336785	-8.46619	54.27167	Garavogue Estuary
15	Ballintogher &	SW002	176058	328013	-8.36763	54.20052	Tiratick River
	Environs						
14	Dromahair	SW002	179714	331716	-8.31186	54.23395	Bonet River
13	Killarga	SW002	186430	330906	-8.20883	54.22689	Unnamed stream
11	Manorhamilton	SW002	187964	339214	-8.18565	54.30157	Owenmore River
12	Manorhamilton	SW004	188440	339433	-8.17835	54.30354	Owenmore River

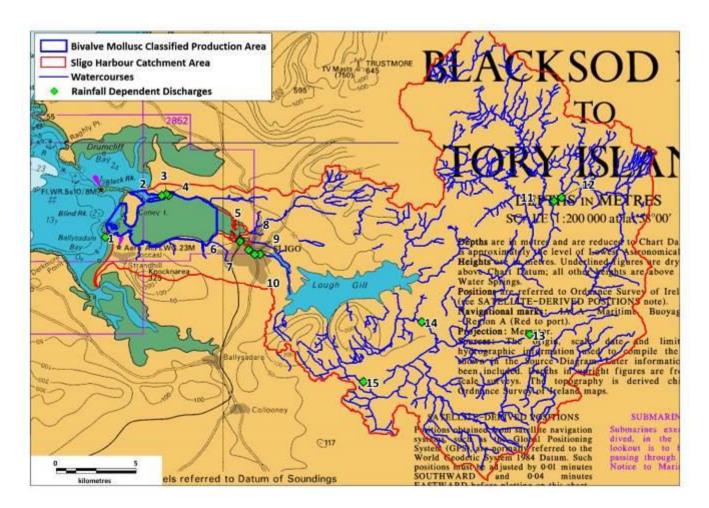


Figure 3.7: Rainfall Dependent Discharges associated with the Sewage Treatment Works within the Sligo Harbour Catchment Area (Source: The EPA, 2019a).

3.1.4. Industrial Discharges

Figure 3.8 shows the industrial discharges to water within the Sligo Harbour catchment area accounted for during the desk-based assessment (EPA, 2019c; EPA, 2019d). In total, there are six industrial discharges belonging to three facilities. The nature of the facilities is pharmaceutical, waste and video tape production, the latter closed down in 2002. Details on these industrial discharges can be seen in Tables 3.6 and 3.7. There are 18 Section 4 licences (see Figure 3.9) for the discharge of trade effluent, with 10 discharging directly into Sligo Harbour and the remaining 8 discharging to rivers within the catchment. Table 3.8 shows details of these Section 4 licences. Where known, the nature of the discharge is included in Table 3.8. The majority of the Section 4s do not have a sewage/waste water component. Only, three of the 10 Section 4s discharging directly into Sligo Harbour have a sewage/wastewater component. In addition, Leitrim County Council has confirmed that the four Licences in their jurisdiction are largely compliant with its Section 4 Licence limits and downstream sites are not showing any adverse effects. These sites are reviewed and monitored quarterly by Leitrim County Council.

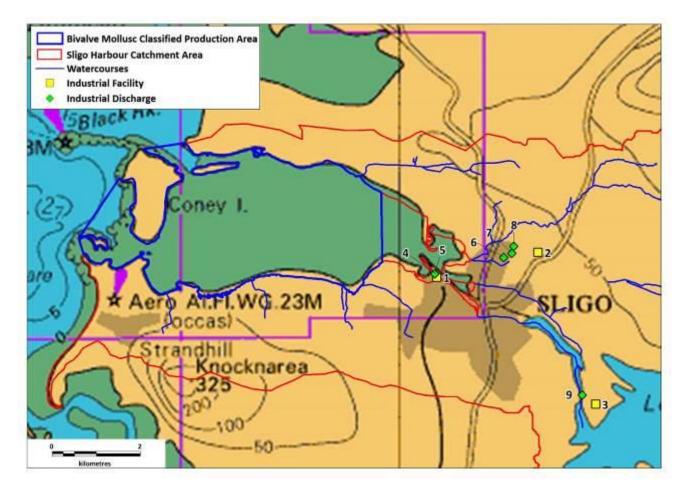


Figure 3.8: All industrial discharges within the Sligo Harbour Catchment Area (Source: (EPA, 2019c; EPA, 2019d).

Table 3.6: Industrial Facilities with discharges to water within the Sligo Harbour Catchment Area (Source: EPA, 2019c). Map Codes refer to Figure 3.7.

Мар	Licence	Licence	Licence holder	Facility ad	Longitude	Latitude	Easting	Northing
Code	No.	Туре						
1	W0058	IEL	Starrus Eco Holdings Limited (Sligo)	Deepwater Quay, Sligo	-8.48845	54.27982	168184	336910
2	P0643	IEL	AbbVie Ireland NL B.V.	Manorhamilton Road, Sligo	-8.45306	54.28492	170492	337462
3	P0135	IPPC	Saehan Media (Irl.) Limited	Hazelwood, Sligo	-8.43298	54.25394	171779	334005

Table 3.7: Details of Industrial discharges to water within the Sligo Harbour Catchment Area (Source: EPA, 2019c). Map Codes refer to Figure 3.7.

Map	Discharge Code	Licence	Licence holder	Longitude	Latitude	Easting	Northing
		Туре					
4	W0058-01_SE1_EW	IE	Starrus Eco Holdings Limited (Sligo)	-8.48904	54.28056	168196	336970
5	W0058-01_SE2_EW	IE	Starrus Eco Holdings Limited (Sligo)	-8.48904	54.28056	168196	336970
6	P1087-01_SW1_EW	IE	AbbVie Ireland NL B.V.	-8.46503	54.28389	169762	337408
7	P1087-01_SW2_EW	IE	AbbVie Ireland NL B.V.	-8.46214	54.28473	169951	337423
8	P1087-01_SW3_EW	IE	AbbVie Ireland NL B.V.	-8.46151	54.28619	169993	337585
9	P0135-01_W1_EW	IPC	Saehan Media (Irl.) Limited	-8.43764	54.25581	171527	334193

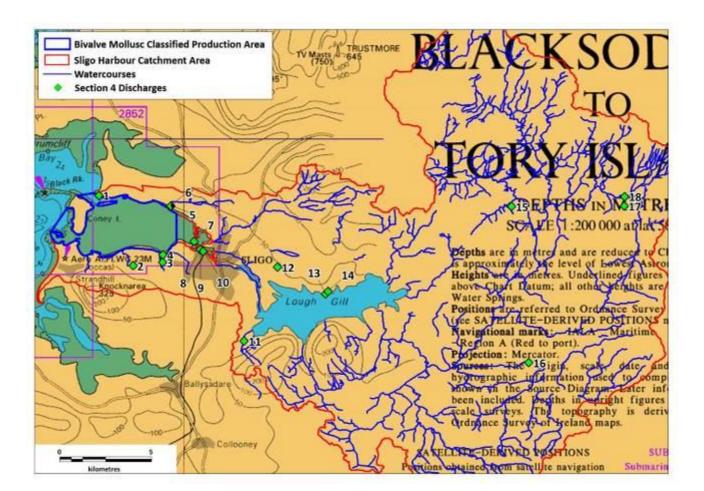


Figure 3.9: Section 4 discharges within the Sligo Harbour Catchment Area (Source: (EPA, 2019c; EPA, 2019d).

Table 3.8: Details on Section 4 discharges within the Sligo Harbour Catchment Area (Source: EPA, 2019d). Map Codes refer to Figure 3.9.

Map Code	File Reference	Licence holder	Facility Type	Nature of Discharge	Longitude	Latitude	Easting	Northing
1	DL(W)137	Sligo Yacht Club	Recreational/Commercial	Now discharging to IW Sewer (no discharge to waters licence)	-8.57239	54.30625	162740	339892
2	DL (W) 24	Scarden Court	Residential On-site WWTP	Discharging to groundwater /<5m ³ /day (no licence required)	-8.54382	54.27186	164570	336050
3	DL (W) 7	James and Winifred Beirne	One off house	Discharging to surface waters via On-site WWP	-8.51913	54.2735	166180	336220
4	DL (W) 3	Sligo Dairies Ltd	Commercial	Premises has closed down (no/lapsed licence)	-8.51887	54.27709	166200	336620
5	DL (W) 16R1	Radisson Blu Hotel	Commercial	Mixed domestic and trade effluent discharging to surface water	-8.51232	54.30087	166646	339263
6	DL (W) 22	HSE Cregg House	Commercial residential	Mixed domestic and trade effluent discharging to surface water	-8.51218	54.3011	166655	339289
7	DL (W) 39	Erin Recyclers Ltd	Commercial	Now discharging to IW Sewer	-8.49273	54.28365	167908	337338
8	DL(W)109	Sligo Fuels Sales Limited	Commercial	Oil storage Depot/ no domestic effluent	-8.48752	54.27969	168244	336894
9	DL (W) 90	McCormack Fuels Ltd	Commercial	Oil Storage Depot/ no domestic effluent	-8.48728	54.27965	168260	336890
10	DL(W)149	Bord Na Mona fuels Ltd	Commercial	Fuel storage compound (coal). No domestic effluent.	-8.48524	54.27873	168392	336787
11	DL (W) 139	Cemex ROI Ltd	Commercial	Quarrying run-off (Septic tank on site discharges to groundwater)	-8.4507	54.23492	170611	331895
12	DL (W) 34	John Davey Motors Ltd	Commercial	Mixed domestic and trade effluent. Discharge is to groundwater via On- site WWTP.	-8.42271	54.27109	172460	335910
13	DL (W) 13R	Saint Angela's College	Educational College	Mixed domestic and trade, discharge is to surface waters via		54.25805	175068	334444

Мар	File	Licence holder	Facility Type	Nature of Discharge	Longitude	Latitude	Easting	Northing
Code	Reference							
				On-site WWTP.				
14	DL (W) 43	Saint Angela's	Residential/ Student	Mixed domestic and trade,			175218	334579
		College	Accommodation	discharge is to surface waters via				
		Residences		On-site WWTP	-8.38027	54.25927		
15	WPL/07/04	D.K Trotter	Quarry		-8.2265	54.3009	185254	339169
16	WPL/10/03	Seamus Kerrigan	Quarry				186167	330644
		Ltd			-8.21208	54.22434		
17	WPL/10/01	Tates Quarry	Quarry		-8.13199	54.30104	191407	339169
18	WPL/10/06	Mr Damien	Coal Depot				191424	339687
		McPartland			-8.13174	54.30569		

3.1.5. Landuse Discharges

Figure 3.10 shows the Corine landuse (EPA, 2019e) within the Sligo Harbour catchment area. Figure 4.4 (page 89) shows all rivers/streams within the catchment area. Within the catchment area, land use is dominated by land principally occupied by agriculture, with significant areas of natural vegetation (155.4km²; 33.2%), followed by pastures (71.7km²; 15.3%), peat bogs (60.4km²; 12.9%), transitional woodland-shrub (35.3km²; 7.6%) and moors and heathland (33.1km²; 7.1%) (see Figure 3.11). Forestry (coniferous, broad-leafed and mixed) makes up 9.8% of the land use in the area (45.7km²).

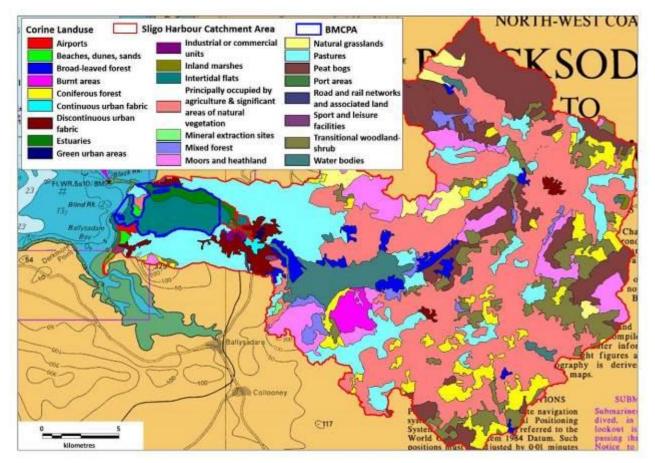


Figure 3.10: Land use within the Sligo Harbour Catchment Area (Source: EPA, 2019e).

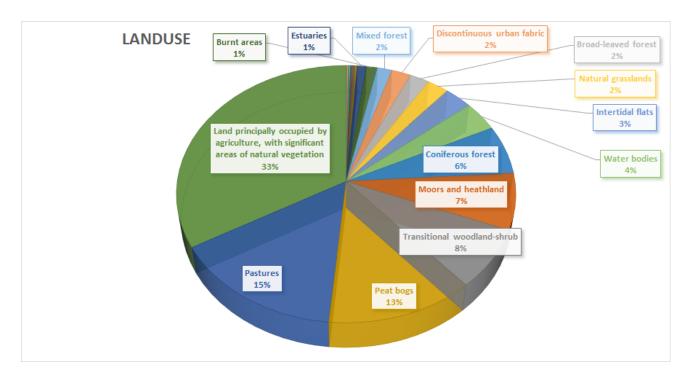


Figure 3.11: Breakdown of landuse within the Sligo Harbour Catchment Area (only landuse ≥1% is labelled).

Data from the Census of Agriculture 2010 (CSO, 2019b) can be seen in Table 4.10 below. Figures 3.12 to 3.19 show thematic maps for each category in Table 4.9. There are no farms or agricultural activity in the Aghalateeve / Aghanlish, Aghavoghill / Melvin and Garvagh / Arigna EDs which are located in the eastern extent of the catchment. Although there are a small number of farms in the Sligo East (2), Sligo North (2) and Sligo West (5) EDs no data are available as they have been suppressed for reasons of confidentiality, where individual farm details might be identifiable when results are presented at ED level.

Numbers of farms within the catchment range from 2 in Sligo East and Sligo North, Co. Sligo to 98 in Calry, Co. Sligo. The total area farmed within the catchment varies from 488 ha in Drumcliff West, Co. Sligo to 2,129 ha in Manorhamilton, Co. Leitrim. The average farm size ranges from 17.8 ha in Kilmacowen, Co. Sligo to 52.3 ha in Killarga, Co. Leitrim.

Total grass and rough grazing (combination of total pasture, total silage, total hay and rough grazing) accounted for almost all of the area farmed, ranging from 488 ha in Drumcliff West, Co. Sligo to 2,120 ha in Manorhamilton, Co. Leitrim. Total crops range from 0 ha in all areas with the exception of 1 ha in Drumcolumb, Co. Sligo, 3 ha Cloonlogher, Co. Leitrim, 5 ha in Calry, Co. Sligo, 7 ha in Kilmacowen, Co. Sligo and 9 ha in Manorhamilton, Co. Leitrim.

The total number of cattle within the catchment range from 168 in Glencar, Co. Sligo to 2,357 in Kilmacowen, Co. Sligo. The total number of sheep within the catchment range from 282 in Belhavel, Co. Leitrim to 10,333 in Glenaniff, Co. Leitrim. The total number of horses within the catchment range from 2 at Drumcliff East, Co. Sligo and Glencar, Co. Leitrim to 98 in Manorhamilton, Co. Leitrim.

The total area farmed in the entire ED's shown in Figures 3.12 to 3.19 amounts to 43,186 ha. However, as most of these ED's only partially overlap the catchment area, an attempt was made to estimate the actual area farmed within the catchment. The percentage of the ED lying within the catchment was calculated in GIS and from this value the area farmed was calculated *e.g.* if 50% of ED lies within catchment area then 50% of the area farmed was taken to be the area farmed within the catchment. Using this method, the area farmed within the catchment is estimated at 21,462 ha. This represents 36% of the area.

Table 3.9: Farm census data for all EDs within the Sligo Harbour Catchment Area (Source: CSO, 2019b).

ED Name	County	No.	Area Farmed	Avg. Farm	Total Crops	Total Grass & Rough	Cattle	Sheep	Horses
		Farms	(ha)	Size (ha)	(ha)	Grazing (ha)*			
Aghalateeve / Aghanlish	Leitrim	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Aghavoghill / Melvin	Leitrim	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ballaghameehan	Leitrim	67	1884	28.1	0	1885	988	4971	22
Ballintogher East	Sligo	55	1184	21.5	0	1184	1000	803	14
Ballintogher West	Sligo	56	1314	23.5	0	1314	1248	759	30
Ballynakill	Sligo	67	1574	23.5	0	1574	1458	1070	31
Belhavel	Leitrim	54	1230	22.8	0	1230	862	282	25
Calry	Sligo	98	2027	20.7	5	2022	1232	4779	20
Cloonlogher	Leitrim	70	1711	24.4	3	1710	1056	2373	17
Collooney	Sligo	49	1390	28.4	0	1389	1262	1146	31
Drumahaire	Leitrim	73	1752	24.0	0	1752	1319	1542	58
Drumcliff East	Sligo	40	1070	26.8	0	1069	1088	3927	2
Drumcliff West	Sligo	27	488	18.1	0	488	498	451	4
Drumcolumb	Sligo	58	1286	22.2	1	1285	974	291	3
Drumkeeran	Leitrim	67	1726	25.8	0	1726	1066	866	9
Garvagh / Arigna	Leitrim	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Glenade	Leitrim	50	1225	24.5	0	1225	281	5104	10
Glenaniff	Leitrim	44	1780	40.5	0	1780	356	10333	4
Glenboy	Leitrim	31	1138	36.7	0	1137	434	3935	6
Glencar	Leitrim	65	2090	32.2	0	2090	305	10166	2
Glencar	Sligo	28	811	29.0	0	810	168	6744	6
Killanummery	Leitrim	57	1283	22.5	0	1283	857	496	13
Killarga	Leitrim	33	1726	52.3	0	1726	365	3155	6
Kilmacowen	Sligo	86	1530	17.8	7	1522	2357	1919	46

November 2020

ED Name	County	No.	Area Farmed	Avg. Farm	Total Crops	Total Grass & Rough	Cattle	Sheep	Horses
		Farms	(ha)	Size (ha)	(ha)	Grazing (ha)*			
Kiltyclogher	Leitrim	45	1454	32.3	0	1454	678	2675	6
Kinlough	Leitrim	53	1697	32.0	0	1696	891	4940	15
Knockaree	Sligo	61	1697	27.8	0	1698	1786	5108	30
Lurganboy	Leitrim	65	1871	28.8	0	1871	1205	6202	12
Manorhamilton	Leitrim	74	2129	28.8	9	2120	1244	5793	98
Munakill	Leitrim	46	1378	30.0	0	1377	688	4407	9
Shancough	Sligo	33	919	27.8	0	919	704	783	12
Sligo East #	Sligo	2	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Sligo North #	Sligo	2	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Sligo West #	Sligo	5	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Sramore	Leitrim	60	1822	30.4	0	1822	979	3699	19

* Total Grass and Rough Grazing was taken to be the sum of Total Pasture, Total Silage, Total Hay and Rough Grazing.

Due to the small number of farms in these EDs some or all of the Census of Agriculture 2010 details are not being made available at the Electoral District level. Data has been suppressed for reasons of confidentiality, where individual farm details might be identifiable when results are presented at ED level.

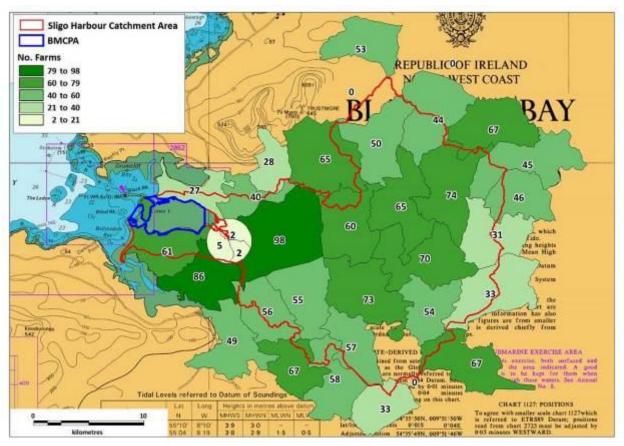


Figure 3.12: Number of farms within the Sligo Harbour Catchment Area (Source: CSO, 2019b).

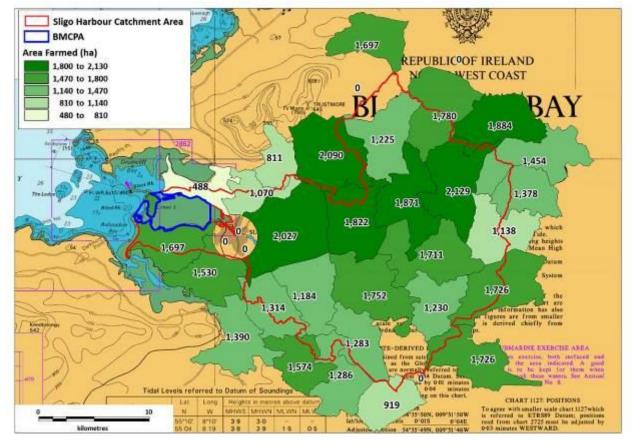


Figure 3.13: Area farmed (ha) within the Sligo Harbour Catchment Area (Source: CSO, 2019b).

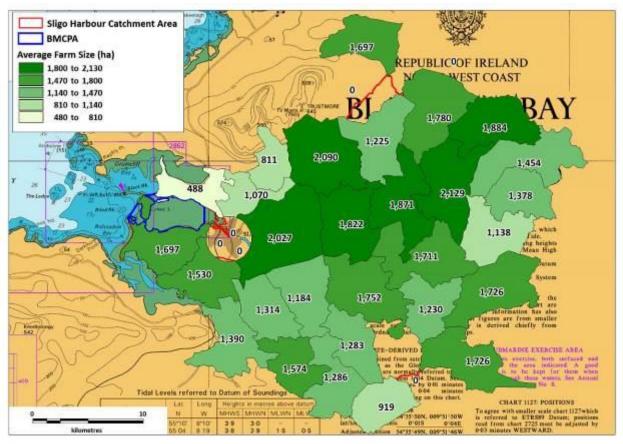


Figure 3.14: Average farm size (ha) within the Sligo Harbour Catchment Area (Source: CSO, 2019b).

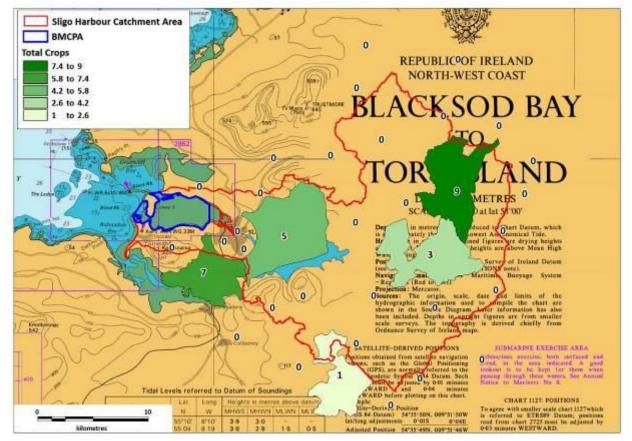


Figure 3.15: Total crops within the Sligo Catchment Area (Source: CSO, 2019b).

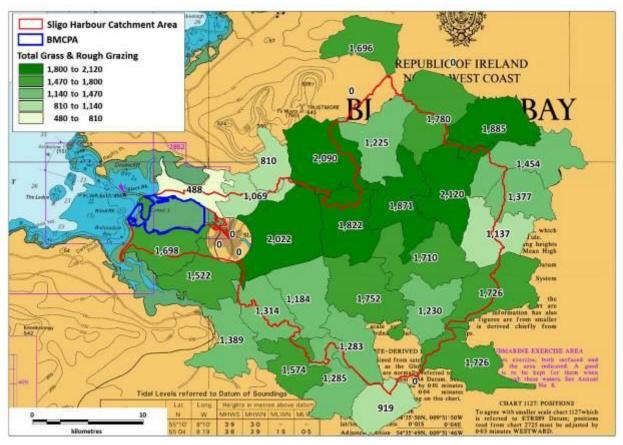


Figure 3.16: Total grass and rough grazing within the Sligo Harbour Catchment Area (Source: CSO, 2019b).

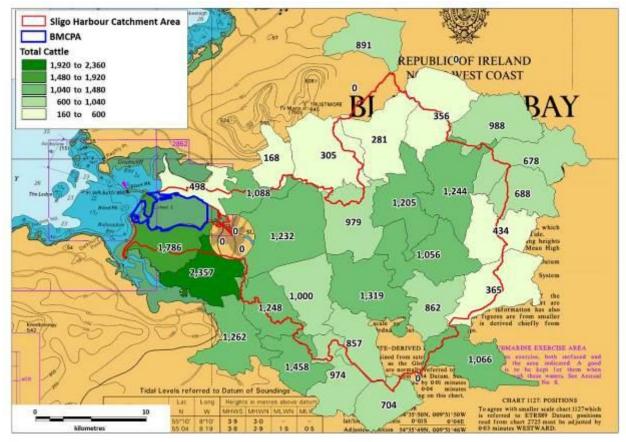


Figure 3.17: Cattle within the Sligo Harbour Catchment Area (Source: CSO, 2019b).

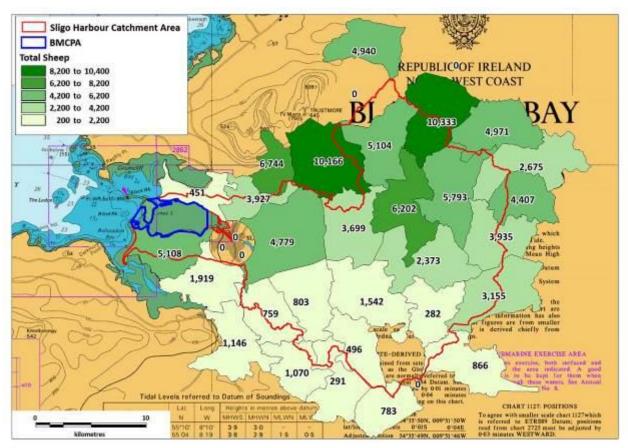


Figure 3.18: Sheep within the Sligo Harbour Catchment Area (Source: CSO, 2019b).

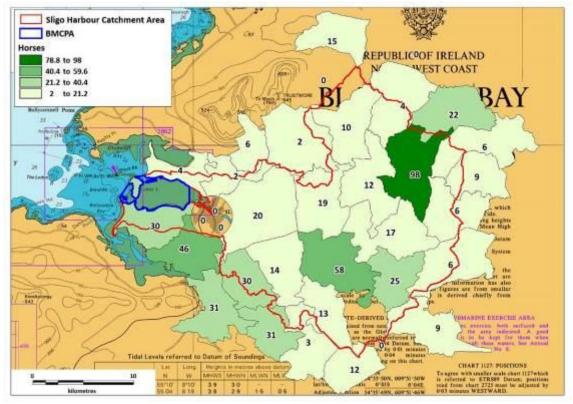


Figure 3.19: Horses within the Sligo Harbour Catchment Area (Source: CSO, 2019b).

A number of studies have reported a strong association between intensive livestock farming areas and faecal indicator concentrations of microorganisms in streams and coastal waters due to run-off from manure, especially during high flow conditions, both from point and non-point sources of contamination (*e.g.* Crowther *et al.,* 2002). Table 3.10 shows the potential daily loading of *E. coli* from livestock (compared to humans and birds). It can be seen that sheep rank the worst, followed by pigs, cows, birds, humans and poultry.

Source	Faecal Production (g/day)	Average Number (<i>E. coli</i> /g)	Daily Load (<i>E. coli</i>)	Rank
Man	150	13 x 10 ⁶	1.9 x 10 ⁹	5
Cow	23600	0.23 x 10 ⁶	5.4 x 10 ⁹	3
Sheep	1130	16 x 10 ⁶	18.1 x 10 ⁹	1
Chicken	182	1.3 x 10 ⁶	0.24 x 10 ⁹	6
Pig	2700	3.3 x 10 ⁶	8.9 x 10 ⁹	2
Gull	15.3	131.2 x 10 ⁶	2 x 10 ⁹	4

Table 3.10: Potential daily loading of *E. coli* (Jones & White, 1984).

The largest majority of livestock in the area are sheep. Cattle are also present but in lower numbers. The majority of agricultural land use in the area is total grass and rough grazing. Sheep are present in relatively large numbers throughout with the highest numbers in the northern half of the catchment which is more mountainous while the highest numbers of cattle are present in the southern flatter regions and in the valleys between the mountains. Sheep numbers would be expected to increase in spring following the birth of lambs and decrease in the autumn as they are sent to market. Therefore, larger quantities of livestock droppings will be deposited during this period, though it may not impact the fishery until washed into the sea during and/or after periods of rainfall unless deposited directly on the shoreline.

3.1.6. Wildlife

3.1.6.1. Birds

It is important to document the bird populations in the Sligo Harbour area as bird faeces are rich in faecal bacteria (Oshira & Fujioka, 1995) and have been shown to be a source of faecal contamination in the marine environment (Jones *et al.* 1978; Standridge *et al.* 1979; Levesque *et al.* 1993, Alderisio & DeLuca 1999, Levesque *et al.* 2000, Ishii *et al.* 2007).

The Cummeen Strand SPA (Site Code: IE004035) is located within the Sligo Harbour area and can be seen in Figure 2.3.

The SPA is a large shallow bay which stretches from Sligo Town westwards to Coney Island (NPWS, 2014).

The Garavogue River flows into the bay and forms a permanent channel. At low tide, extensive sand and mud flats are exposed. Cummeen Strand supports important concentrations of wintering waterfowl, including an internationally important Light-bellied Brent Goose flock (223) and nationally important populations of Oystercatcher (680) and Redshank (408) (NPWS, 2014). Other species occurring include Shelduck (86), Wigeon (149), Teal (54), Mallard (145), Red breasted Merganser (15), Golden Plover (428), Lapwing (695), Knot (165), Sanderling (14), Dunlin (539), Bar-tailed Godwit (85), Curlew (430), Greenshank (13) and Turnstone (62) (NPWS, 2014). Golden Plover and Bar-tailed Godwit are regularly present, which is of particular note as these species are listed on Annex I of the E.U. Birds Directive (NPWS, 2014).

Sligo Harbour is routinely surveyed by Birdwatch Ireland (through the I-WeBS [Irish Wetland Bird Survey] Project). The total peak counts for each season from 2011 to 2016 can be seen in Table 3.11.

Table 3.11: Total number of waterbirds in Sligo Harbour between 20011/12 and 2015/16 seasons (Source: BWI, 2019).

Site Name	2011/12	2012/13	2013/14	2014/15	2015/16	Mean
Sligo Harbour	3655	7306	5212	5217	4761	5230.2

Population levels of birds over the five years are fairly stable, with a low in the 2011/2012 season and a high in the following year 2012/2013. Bird numbers in the area increase during the winter months when the wintering waterfowl arrive. However, it is highly likely that these levels are low when compared with land-based discharges.

3.1.6.2. Aquatic mammals

Both Coney and Oyster Islands are potential haul out sites for both Common (*Phoca vitulina*) and Grey seals (*Haliochoerus grypus*). Other aquatic mammals that may occur in Sligo Harbour include Otter (*Lutra lutra*), Bottle nosed Dolphin (*Tursiops truncatus*) and Harbour Porpoise (*Phocoena phocoena*). However, due to the shallow nature of the bay, the latter two species rarely occur there.

No estimates of the volumes of seal faeces are available although it is reasonable to assume that what is ingested and not assimilated in the gut must pass. Assuming 6% of a median body weight for grey seals of 185kg, that would equate to 11.1kg consumed per day and probably very nearly that defecated. The concentration of *E. coli* and other faecal indicator bacteria contained in seal faeces has been reported as being similar to that found in raw sewage, with counts showing up to 1.21 x 104 CFU *E. coli* per gram dry

weight of faeces (Lisle *et al.,* 2004). *Salmonella* and *Campylobacter* spp. have also been found in wild seals (Stoddard *et al.,* 2005).

All aquatic mammals that occur in the BMPA are likely to contribute to background levels of faecal contamination within the area particularly during the haul-out periods.

3.1.7. Other Pollution Sources

3.1.7.1. Shipping

Figure 3.20 shows all boat facilities and activities in Sligo Harbour. Table 3.12 details these facilities. The only commercial port in Sligo Harbour is Sligo Port. There were approximately 9 shipping arrivals in 2017 at the port of Sligo and these consisted of dry bulk cargo vessels (CSO, 2019c). All cargo vessels were of the size class 100-4,999 tonnes. In 2017, 18,000 tonnes of goods were received through the port (CSO, 2019c).

A jetty area is also located within Sligo Port which supports a number of small boats and yachts. During the time of the shoreline survey none of these boats appeared to be lived upon or used on an overnight basis.

There are no ferries operating in Sligo Harbour. There are several piers and slipways located along the shorelines of Sligo Harbour with the majority sited along the northern extent of the bay and also in the inner Sligo Port area. All the piers are used frequently by a wide number of groups including recreational groups.

While data on sewage discharge levels from boating activities in the area are not available, any discharges from the relatively small number of vessels in the area would have a limited impact on water quality.

November 2020

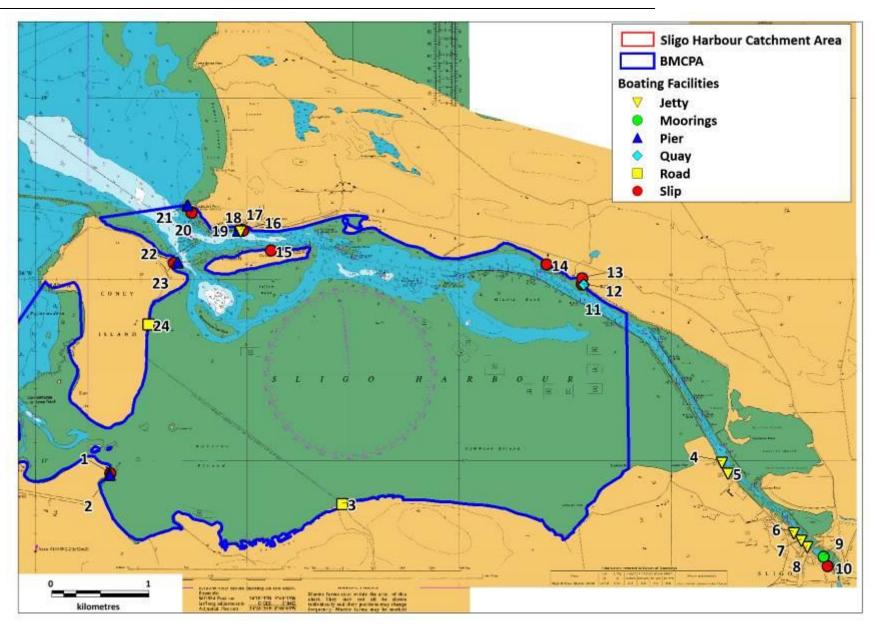


Figure 3.20: Location of all boating facilities and activities in Sligo Harbour.

JN1520

Мар	Feature	Use (if known)
Code		
1	Slip	
2	Pier	
3	Access Road to Coney Island	Low tide access to Coney Island
4	Deep Water Jetty	Commercial Port
5	Oil Jetty	
6	Jetty No. 2	
7	Jetty No. 1	
8	Timber Jetty	Pleasure craft
9	Moorings	Pleasure craft
10	Quay Street Slip	Pleasure craft
11	Quay	
12	Private Slip and Quay	
13	Slip	
14	Private slip	
15	Oyster Island Old Slip	May no longer be in use
16	RNLI Slip	RNLI rescue boat
17	Rosses Point Jetty	Pleasure craft, Fishing, Aqua tourism
18	Rosses Point Slip	Pleasure craft, Fishing, Aqua tourism
19	Rosses Point Pier	Pleasure craft, Fishing, Aqua tourism
20	Sligo Yacht Club Slip	Sailing boats
21	Sligo Yacht Club Pier	
22	Coney Island Pier	
23	Coney Island Slip	
24	Road Access from Coney Island to Mainland	Low water Access from Coney Island to Mainland

Table 3.12: Boating facilities in the Sligo Harbour. Map Code refers to Figure 4.20.

3.2. Shoreline Survey Report

A shoreline survey was carried out by the Sea Fisheries Protection Authority. Figure 3.21 shows the GPS (Global Positioning System) and photography sites accounted for during the 7 survey days.

The aim of the survey was to confirm the location of the bivalve mollusc fishery and to confirm the presence of the sources of contamination already identified during the desktop study and to also identify any additional potential sources of contamination. GPS coordinates were recorded for all features and

marked on a map. In addition, all features were photographed digitally (where possible). Notes were made on the numbers and types of farm animals obvious from the shoreline and on wild fowl/populations of wild animals with an estimation of their numbers.

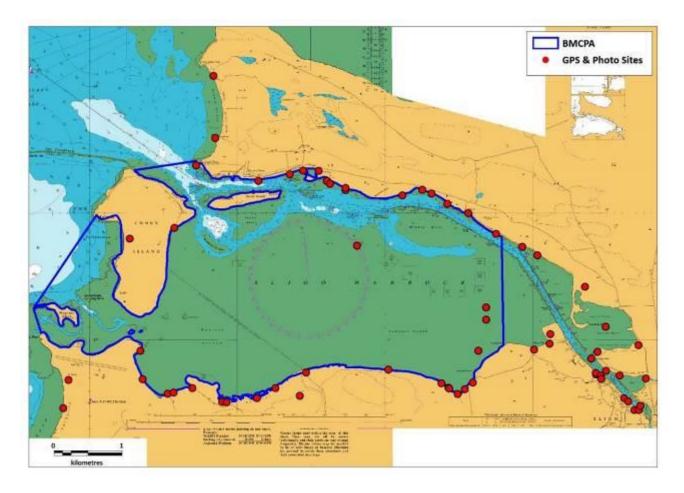


Figure 3.21: Locations of GPS and Photograph Sites.

Figure 3.22 shows the locations of all features observed during the shoreline survey. In total 65 features were identified, of which 16 rivers/streams were identified, 19 drains, 3 WWTP, 1 discharge from WWTP, 15 discharge pipes and 4 manholes. Figures 3.23 to 3.39 show aerial imagery of the location of the features and Figures 3.40 to 3.44 shows images of most of these features. Table 3.13 details all features identified and the numbering used is cross-referenced to Figures 3.22 to 3.44.

Мар	Observation	Comments	Longitude	Latitude	Easting	Northing
Code						
1	Large discharge pipe	Likely sewage related - odour	-8.60662	54.27458	160531.8	336364.3
2	Waste water treatment plant	Under construction	-8.6055	54.2783	160608.1	336777.5
3	Pipe	no discharge visible	-8.58925	54.28217	161670.2	337198.9
4	Drainage ditch		-8.58877	54.2784	161698.2	336779.4
5	Field drain pipe		-8.58308	54.2765	162066.7	336564.8
6	Small stream	Some enrichment	-8.58175	54.27667	162153.6	336582.7
7	Field drain		-8.57755	54.27723	162427.8	336643.4
8	Tiny stream		-8.57077	54.27545	162868	336441.4
9	Natural drainage stream underground		-8.56973	54.2754	162935.3	336435.3
10	Field drain		-8.56292	54.27595	163379.8	336492.9
11	Field drainage/tiny stream		-8.55877	54.27725	163651.3	336635.5
12	Pasture	Pasture land, grazing.	-8.55329	54.27624	164007.2	336520.2
13	Small stream		-8.55187	54.2793	164102.6	336860.1
14	Field drain		-8.53332	54.27967	165311.2	336891.7
15	Field drain	Enrichment	-8.52132	54.27787	166091.4	336685.5
16	Stream/small river	Enrichment	-8.51975	54.2773	166193	336621.6
17	Man hole cover		-8.51963	54.27722	166200.5	336612.3
18	Stream/small river		-8.51765	54.27647	166329.1	336527.9
19	Stream		-8.51613	54.27708	166428.4	336595.7
20	Stream		-8.51432	54.27798	166547.4	336695.1
21	120 + birds. Mix of waders, ducks and gulls.		-8.51305	54.28217	166633.4	337160.2
22	Birds		-8.51125	54.28625	166753.9	337613.8
23	40 + mix of waders, gulls and duck.		-8.51125	54.28785	166755.2	337791.9

Table 3.13: Features identified during the shoreline survey. Refer to Figures 3.23 – 3.39 for locations and Figures 3.40 to 3.44 for photographs.

Мар	Observation	Comments	Longitude	Latitude	Easting	Northing
Code						
24	Drain/upwelling	Enrichment, iron staining. Broken pipework	-8.50045	54.2823	167454.1	337169.1
25	Drain hole pipe	Likely to be storm overflow from WWTP	-8.49697	54.28307	167681.6	337252.9
26	WWTP Sligo	Treatment Plant	-8.4968	54.28435	167693.5	337395.6
27	Large pipe	Opposite homeland	-8.48657	54.27925	168356	336823.3
28	Upwellings	Upwellings, pipes unseen. Possibly wwtp related.	-8.48647	54.27907	168362.4	336802.9
29	Large pipe	Adjacent waste water treatment plant, covered by high tide	-8.48538	54.27888	168432.9	336781.9
30	Two pipes	Two pipes running in at same spot	-8.48533	54.27847	168435.8	336735.6
31	Marina	Marina in Sligo town, 15 odd boats assembled here	-8.4802	54.27595	168768.3	336453.1
32	Drain - Gated around exit point	Good flow, adjacent marina. Not possible to access.	-8.47925	54.27548	168829.8	336400.7
33	Drain - likely storm water	No flow, no enrichment evident	-8.4778	54.27438	168923.5	336277.6
34	Drain x 2	Some flow, stormwater and another	-8.47687	54.27438	168984.2	336277.2
35	Garavogue River	Large river, large flow of water	-8.47647	54.27492	169010.7	336336.5
36	Copper River	Steady flow.	-8.47527	54.2785	169091.6	336734.8
37	Pipe	Low flow, odour. Grey water colour	-8.48118	54.27888	168706.5	336780
38	Man hole and pipe	No flow - pipe appears redundant	-8.48423	54.27953	168508.3	336853.7
39	70 + birds. Mix of waders, ducks and gulls.		-8.48755	54.28115	168293.5	337035.2
40	Man hole cover	Part of a number of such holes - Cartron Estate	-8.48613	54.282	168386.4	337129.2
41	Small river	Steady flow, no signs of enrichment	-8.47693	54.2829	168986.3	337225.3
42	50 + mixed ducks. 50 assorted others.		-8.48433	54.28535	168506.2	337501.3
43	Field drains/reed bed	Number of drains combining into reedbed	-8.48895	54.29057	168209.6	338084.1
44	Field drain/stream	Low flow, some algae	-8.49972	54.29473	167511.7	338552.7

Мар	Observation	Comments	Longitude	Latitude	Easting	Northing
Code						
45	Field Drain	Very little flow, some algae	-8.50308	54.29583	167293.4	338676.7
46	Field Drain	Very little flow, some algae	-8.50903	54.29757	166907.4	338872.5
47	Small river	Good flow	-8.51525	54.30027	166504.8	339176
48	Manhole cover	No sign of pipe	-8.52003	54.30152	166194.4	339317.4
49	Natural drain stream	Low flow, some enrichment	-8.52362	54.30287	165962.2	339469.4
50	Natural drain stream	Some enrichment	-8.52568	54.30333	165828.1	339522.3
51	Drain/stream	Steady flow, some enrichment not bad	-8.5302	54.30262	165533.4	339444.8
52	Oyster farm	Oyster farm - two blocks	-8.54037	54.296	164865.9	338713.3
53	Sewage pipe	Wastewater treatment plant	-8.54297	54.3033	164702.9	339527.2
54	Wastewater treatment plant	Sewage fungus, strong flow, pipe burst, odour.	-8.543	54.30362	164701	339562.5
55	Old pipe	No flow, redundant	-8.54648	54.30415	164474.7	339623.5
56	Old pipe	No flow, redundant	-8.54725	54.30453	164425.1	339666.6
57	Drain	Water welling through ground, sign of enrichment	-8.54907	54.30582	164307.9	339810.4
58	Pipe/drain	Pipe with grill. Good flow. Sign of enrichment	-8.5526	54.30587	164078	339817.8
59	Pipe/drain	Piped drain under road rock armour-no flow	-8.5556	54.30538	163882.3	339765.4
60	Pipe/drain	Piped drain under road rock armour-no flow	-8.5626	54.30453	163425.9	339674.4
61	Narrow pipe	Long narrow pipe running out into water	-8.57673	54.30653	162507.6	339904.5
62	Old pipe	Old pipe - broken. Old system. No flow	-8.57238	54.31018	162794.1	340308.5
63	Stream on beach	Two streams merging- good flow	-8.57283	54.31833	162772.2	341215.9
64	Small stream draining lagoon	Flowing out onto sandbanks	-8.58165	54.29833	162180	338994.3
65	Sheep	40 + sheep on pasture land.	-8.59169	54.29689	161525	338839.2
66	100 + geese	100+ geese	8.562242	54.284068	163430.87	337395.87

November 2020

Figure 3.23: Features 1-2 (numbering crossreference to Table 3.13) identified during the shoreline survey.

November 2020

Figure 3.24: Features 3-7 (numbering crossreference to Table 3.13) identified during the shoreline survey.

Figure 3.25: Features 8-11 (numbering cross-reference to Table 3.13) identified during the shoreline survey.

November 2020

Figure 3.26: Features 12-14 (numbering cross-reference to Table 3.13) identified during the shoreline survey.

November 2020

Figure 3.27: Features 15-20 (numbering cross-reference to Table 3.13) identified during the shoreline survey.

November 2020



Figure 3.28: Features 21-23 (numbering crossreference to Table 3.13) identified during the shoreline survey.

November 2020

Figure 3.29: Features 24-26 (numbering cross-reference to Table 3.13) identified during the shoreline survey.

November 2020

Figure 3.30: Features 27-30 and 37-40 (numbering cross-reference to Table 3.13) identified during the shoreline survey.

November 2020

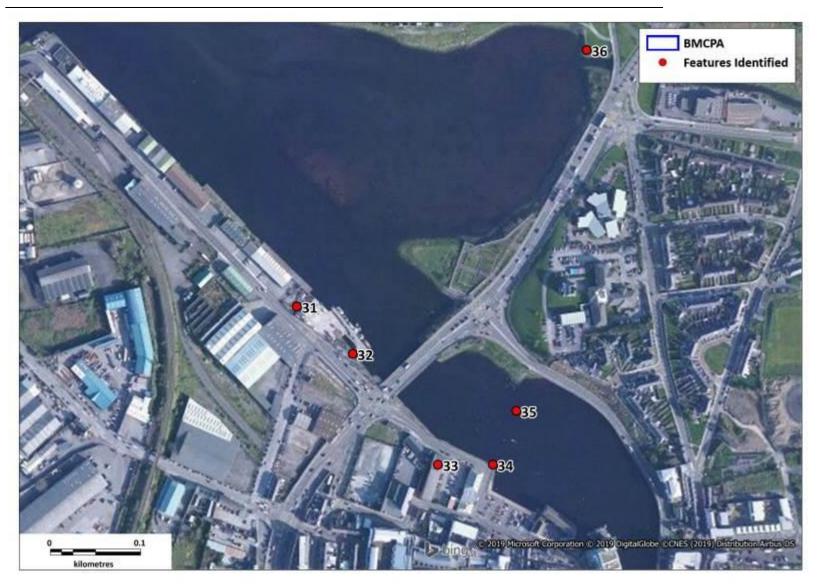


Figure 3.31: Features 31-36 (numbering cross-reference to Table 3.13) identified during the shoreline survey.

November 2020

Figure 3.32: Features 41-42 (numbering cross-reference to Table 3.13) identified during the shoreline survey.

Figure 3.33: Features 43-45 (numbering cross-reference to Table 3.13) identified during the shoreline survey.

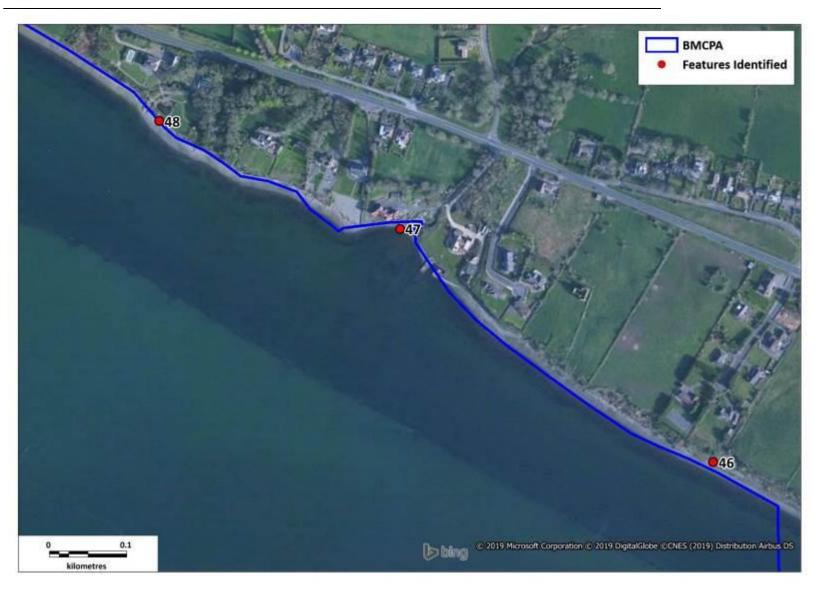


Figure 3.34: Features 46-48 (numbering cross-reference to Table 3.13) identified during the shoreline survey.

Figure 3.35: Features 49-51 (numbering cross-reference to Table 3.13) identified during the shoreline survey.

Sea Fisheries Protection Authority

November 2020

Figure 3.36: Features 53-58 (numbering cross-reference to Table 3.13) identified during the shoreline survey.

Sea Fisheries Protection Authority

November 2020

Figure 3.37: Features 59-60 (numbering cross-reference to Table 3.13) identified during the shoreline survey.

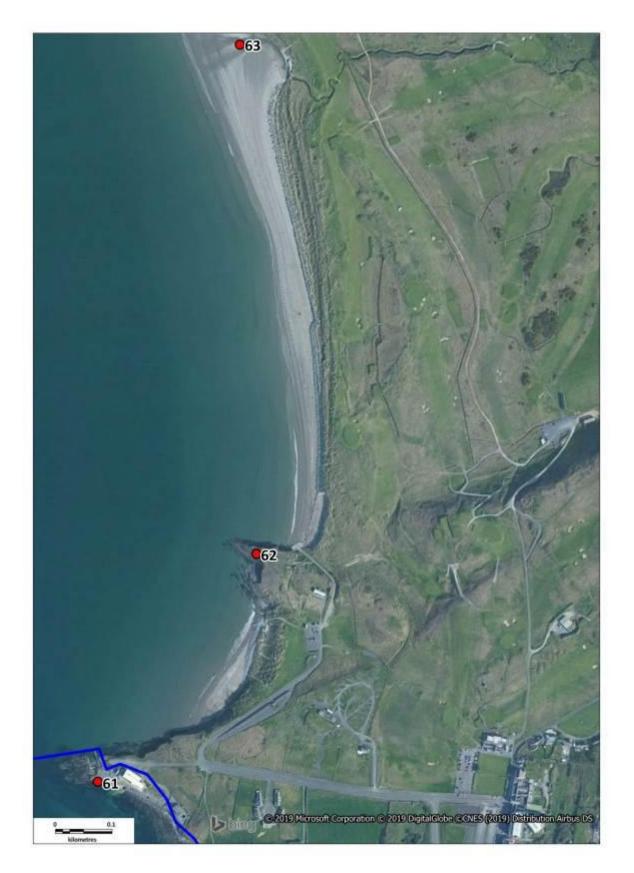


Figure 3.38: Features 61-63 (numbering cross-reference to Table 3.13) identified during the shoreline survey.

Sea Fisheries Protection Authority

November 2020

Figure 3.39: Features 64-65 (numbering cross-reference to Table 3.13) identified during the shoreline survey.

Figure 3.40: Features 1-10 located during the shoreline survey. Refer to Figures 3.22-3.25 for site locations.

Figure 3.41: Features 11-24 located during the shoreline survey. Refer to Figures 3.22 and 3.25 to 3.29 for site locations.

Figure 3.42: Features 25-38 located during the shoreline survey. Refer to Figures 3.22 and 3.29 to 3.31 for site locations.

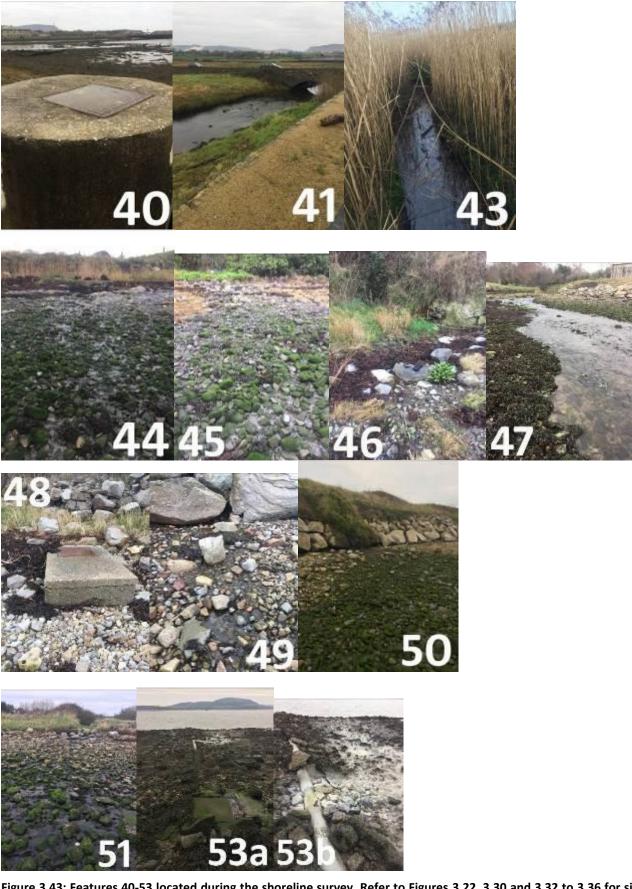


Figure 3.43: Features 40-53 located during the shoreline survey. Refer to Figures 3.22, 3.30 and 3.32 to 3.36 for site locations.

Figure 3.44: Features 54-64 located during the shoreline survey. Refer to Figures 3.22 and 3.36 to 3.39 for site locations.

3.3. Locations of Sources

Figure 3.45 shows all watercourses discharging into Sligo Harbour and Table 3.14 provides cross-referenced details for this map. Figure 3.46 and 3.47 shows all discharges in the Sligo Harbour catchment area and Tables 3.15 provides cross-referenced details for the WWTP, drain and pipe discharges and Section 4 discharges.

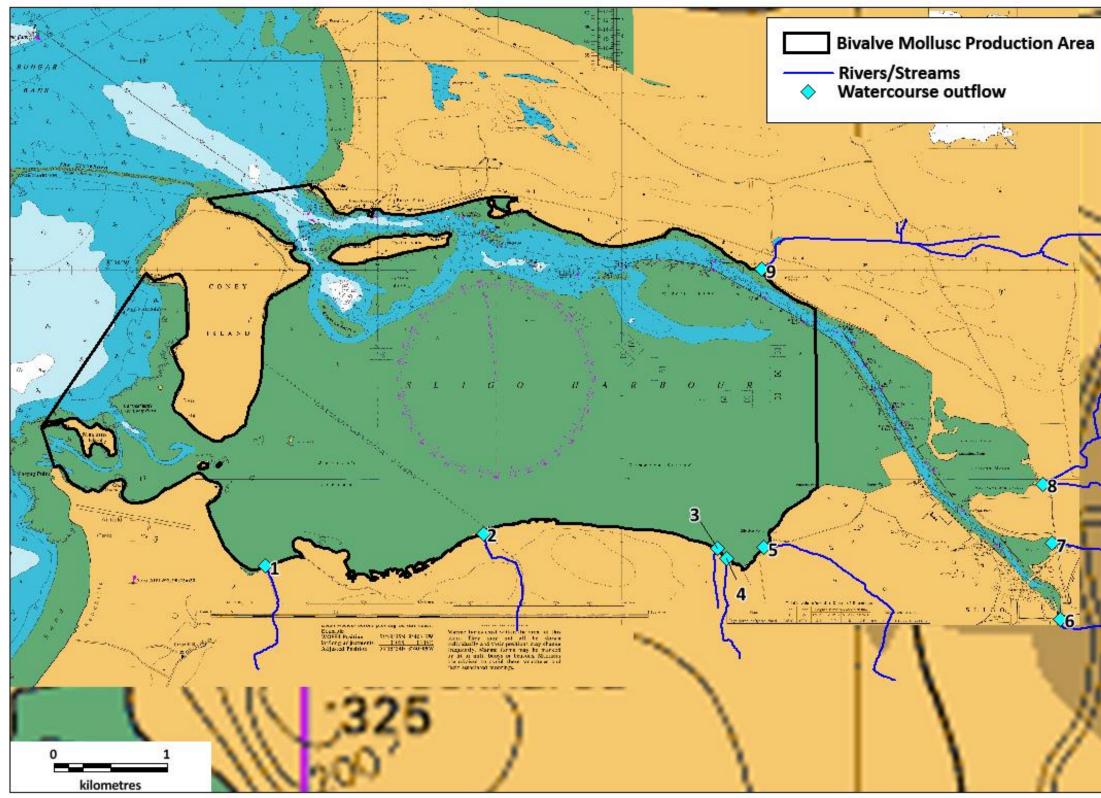


Figure 3.45: Location of all watercourses discharging into Sligo Harbour.

Table 3.14: Cross-referenced table for Figure 3.45 Watercourses.

Map ID	Watercourse
1	Unnamed stream
2	Unnamed stream
3	Unnamed stream
4	Unnamed stream
5	Unnamed stream
6	Garavogue River
7	Copper River
8	Doonally Stream
9	Unnamed Stream

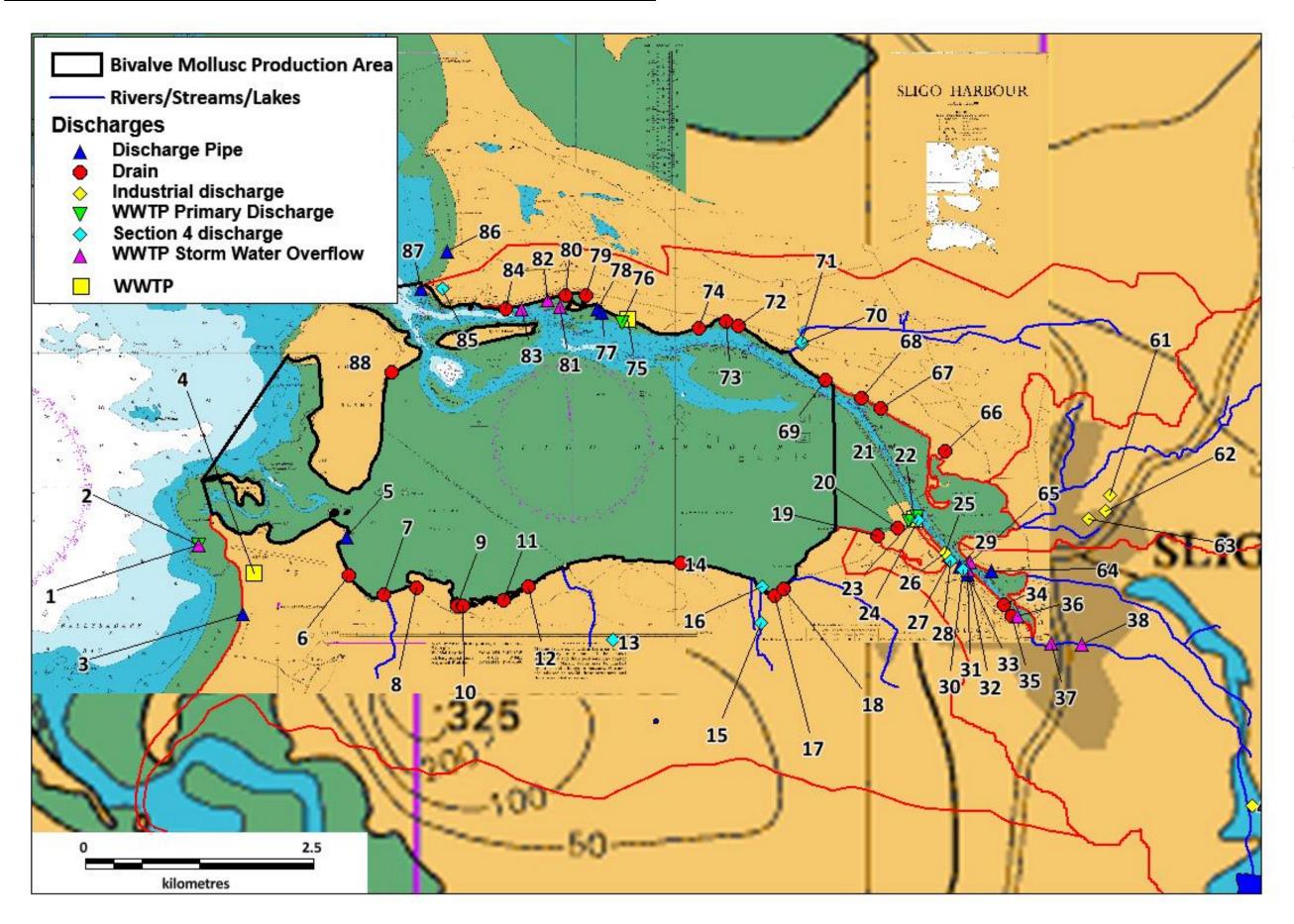


Figure 3.46: Locations of all discharges within the western end Sligo Harbour Catchment Area.

61 205400 62 63 59 55d are reduced to Chart 58 **Depths** are in metr 38LIG0 approximately the level Lowest 8 or 60 Underlined all other atum; erred to Ordnance Sur ED A (Red to poso ion 46 to jection : dar gram upright m, Inc lin. topography is derived e Ireland, maps. ance -ot Collooney SHIONS O llite navigation sa rom OI kilometres

at 51 Astronom figures are heights are abo of note Buc and compile to later inform figures are **SUBMA** Submarines

Figure 3.47: Locations of all discharges within the eastern end Sligo Harbour Catchment Area.

Table 3.15: Cross-referenced table for Figures 3.46 and 3.47 Discharges.

Map ID	Discharge	Description	Latitude	Longitude	Easting	Northing
1	Strandhill	WWTP Primary Discharge	54.28132	-8.61398	160058.5	337117.8
2	Strandhill	Storm Water Overflow	54.28132	-8.61398	160058.5	337117.8
3	Large discharge pipe	Shore Survey	54.27458	-8.60662	160531.8	336364.3
4	Strandhill	WWTP	54.27862	-8.60469	160661.1	336812.2
5	Pipe	Shore Survey	54.28217	-8.58925	161670.2	337198.9
6	Drainage ditch	Shore Survey	54.27840	-8.58877	161698.2	336779.4
7	Field drain pipe	Shore Survey	54.27650	-8.58308	162066.7	336564.8
8	Field drain	Shore Survey	54.27723	-8.57755	162427.8	336643.4
9	Tiny stream	Shore Survey	54.27545	-8.57077	162868.0	336441.4
10	Natural drainage stream underground	Shore Survey	54.27540	-8.56973	162935.3	336435.3
11	Field drain	Shore Survey	54.27595	-8.56292	163379.8	336492.9
12	Field drainage/tiny stream	Shore Survey	54.27725	-8.55877	163651.3	336635.5
13	Scarden Court	Section 4 discharge	54.27207	-8.54457	164571.5	336051.9
14	Field drain	Shore Survey	54.27967	-8.53332	165311.2	336891.7
15	James and Winifred Beirne	Section 4 discharge	54.27371	-8.51988	166181.6	336221.8
16	Sligo Dairies Ltd	Section 4 discharge	54.27730	-8.51962	166201.6	336621.9
17	Stream/small river	Shore Survey	54.27647	-8.51765	166329.1	336527.9
18	Stream	Shore Survey	54.27708	-8.51613	166428.4	336595.7
19	Drain/upwelling	Shore Survey	54.28230	-8.50045	167454.1	337169.1
20	Drain hole pipe	Shore Survey	54.28307	-8.49697	167681.6	337252.9
21	Sligo	WWTP Primary Discharge	54.28368	-8.49501	167809.6	337319.9
22	Sligo	WWTP	54.28397	-8.49415	167866.1	337352.2
23	Sligo	WWTP Primary Discharge	54.28418	-8.49377	167890.6	337374.9
24	Erin Recyclers Ltd	Section 4 discharge	54.28386	-8.49348	167909.6	337339.9
25	Starrus Eco Holdings Limite	Industrial discharge	54.28057	-8.48902	168197.6	336971.9
26	Starrus Eco Holdings Limite	Industrial discharge	54.28057	-8.48902	168197.6	336971.9
27	Sligo Fuels Sales Limited	Section 4 discharge	54.27990	-8.48827	168245.6	336895.8
28	McCormack Fuels Ltd	Section 4 discharge	54.27986	-8.48802	168261.6	336891.8
29	Large pipe	Shore Survey	54.27925	-8.48657	168356.0	336823.3
30	Bord Na Mona fuels Ltd	Section 4 discharge	54.27894	-8.48599	168393.6	336788.8
31	Sligo	Storm Water Overflow	54.27893	-8.48530	168438.6	336786.9
32	Sligo	Storm Water Overflow	54.27893	-8.48530	168438.6	336786.9
33	Two pipes	Shore Survey	54.27847	-8.48533	168435.8	336735.6
34	Drain - Gated around exit p	Shore Survey	54.27548	-8.47925	168829.8	336400.7
35	Drain - likely stormwater	Shore Survey	54.27438	-8.47780	168923.5	336277.6
36	Sligo	Storm Water Overflow	54.27436	-8.47689	168982.6	336274.9
37	Sligo	Storm Water Overflow	54.27173	-8.47118	169352.6	335979.8
38	Sligo	Storm Water Overflow	54.27168	-8.46616	169679.6	335971.9
39	Cemex ROI Ltd	Section 4 discharge	54.23513	-8.45144	170612.6	331896.8
40	Saehan Media (Irl.) Limited	Industrial discharge	54.25583	-8.43762	171528.3	334195.0

Map ID	Discharge	Description	Latitude	Longitude	Easting	Northing
41	Ballintogher	WWTP Primary Discharge	54.20053	-8.36799	176034.6	328013.7
42	Ballintogher	Storm Water Overflow	Storm Water Overflow 54.20054 -8.3		176059.6	328014.8
43	Ballintogher & Environs	WWTP	54.20021	-8.36669	176119.2	327978.1
44	Dromahair	WWTP Primary Discharge	54.23384	-8.31209	179698.7	331703.7
45	Dromahair	Storm Water Overflow	54.23396	-8.31183	179715.6	331717.7
46	Dromahair	WWTP	54.23376	-8.31138	179745.3	331695.1
47	Seamus Kerrigan Ltd	Section 4 discharge	54.22455	-8.21283	186168.7	330645.7
48	Killarga	Storm Water Overflow	54.22691	-8.20881	186431.7	330907.7
49	Killarga	WWTP Primary Discharge	54.22678	-8.20873	186436.7	330893.7
50	Killarga	WWTP	54.22673	-8.20835	186461.2	330888.1
51	Tates Quarry	Section 4 discharge	54.30125	-8.13274	191408.8	339170.7
52	Mr Damien McPartland	Section 4 discharge	54.30590	-8.13249	191425.8	339688.8
53	Manorhamilton	Storm Water Overflow	54.30356	-8.17832	188441.8	339434.8
54	Manorhamilton	WWTP	54.30268	-8.18510	188000.3	339338.2
55	Manorhamilton	Storm Water Overflow	54.30158	-8.18562	187965.8	339215.8
56	Manorhamilton	WWTP Primary Discharge	54.30158	-8.18562	187965.8	339215.8
57	D.K Trotter	Section 4 discharge	54.30111	-8.22725	185255.7	339170.7
58	Saint Angelas College Residences	Section 4 discharge	54.25948	-8.38102	175219.7	334580.8
59	Saint Angela's College	Section 4 discharge	54.25826	-8.38331	175069.6	334445.8
60	John Davey Motors Ltd	Section 4 discharge	54.27130	-8.42346	172461.6	335911.8
61	AbbVie Ireland NL B.V.	Industrial discharge	54.28621	-8.46149	169994.8	337586.9
62	AbbVie Ireland NL B.V.	Industrial discharge	54.28475	-8.46212	169952.8	337424.9
63	AbbVie Ireland NL B.V.	Industrial discharge	54.28390	-8.46501	169763.8	337331.9
64	Pipe	Shore Survey	54.27888	-8.48118	168706.5	336780.0
65	Sligo	Storm Water Overflow	54.27976	-8.48485	168468.6	336878.8
66	Field drains/reed bed	Shore Survey	54.29057	-8.48895	168209.6	338084.1
67	Field drain/stream	Shore Survey	54.29473	-8.49972	167511.7	338552.7
68	Field Drain	Shore Survey	54.29583	-8.50308	167293.4	338676.7
69	Field Drain	Shore Survey	54.29757	-8.50903	166907.4	338872.5
70	Radisson Blu Hotel	Section 4 discharge	54.30107	-8.51307	166647.6	339264.9
71	HSE Cregg House	Section 4 discharge	54.30131	-8.51293	166656.6	339290.9
72	Natural drain stream	Shore Survey	54.30287	-8.52362	165962.2	339469.4
73	Natural drain stream	Shore Survey	54.30333	-8.52568	165828.1	339522.3
74	Drain/stream	Shore Survey	54.30262	-8.53020	165533.4	339444.8
75	Rosses Point	WWTP	54.30354	-8.54214	164757.1	339553.1
76	Rosses Point	WWTP Primary Discharge	54.30317	-8.54311	164693.6	339512.9
77	Old pipe	Shore Survey	54.30415	-8.54648	164474.7	339623.5
78	Old pipe	Shore Survey	54.30453	-8.54725	164425.1	339666.6
79	Drain	Shore Survey	54.30582	-8.54907	164307.9	339810.4
80	Pipe/drain	Shore Survey	54.30587	-8.55260	164078.0	339817.8
81	Rosses Point	Storm Water Overflow	54.30479	-8.55351	164017.5	339697.9
82	Rosses Point	Storm Water Overflow	54.30540	-8.55561	163881.6	339766.9

Map ID	Discharge	Description	Latitude	Longitude	Easting	Northing
83	Rosses point	Storm Water Overflow	54.30456	-8.56004	163592.6	339675.9
84	Pipe/drain	Shore Survey	54.30453	-8.56260	163425.9	339674.4
85	Sligo Yacht Club	Section 4 discharge	54.30645	-8.57314	162741.6	339893.9
86	Old pipe	Shore Survey	54.31018	-8.57238	162794.1	340308.5
87	Narrow pipe	Shore Survey	54.30653	-8.57673	162507.6	339904.5
88	Small stream draining lagoon	Shore Survey	54.29833	-8.58165	162180.0	338994.3

4. Hydrography/Hydrodynamics

4.1. Simple/Complex Models

Two hydrodynamic models of Sligo Harbour have been developed for the Sligo Harbour area, one by Irish Hydrodata Ltd. modelling the mercury discharges from Sligo WWTP and the other was lodged to the EPA as part of a dredging and dumping at sea licence application to model the dispersion of sediment released during dredging (RPS, 2015). The results from these models have been used to describe the hydrodynamics of Sligo Harbour below.

4.2. Depth

The majority of the bay is made up of intertidal sand and mudflats. A navigational channel runs northwesterly from Sligo town towards Oyster Island and out into Sligo Bay between Coney Island and Deadman's Point. The navigational channel is flanked by a training wall out as far as Ballyweelin Point. Depths within the navigation channel range from 0.7 to 3.6m (Admiralty Chart 2852). Beyond Ballyweelin Point the channel widens and deepens to 10m, before shallowing again as it reaches Oyster Island. Water depths in the channel north of Oyster Island reach a maximum of *c*. 7.5m before exiting into Sligo Bay. There is also a channel south of Oyster Island, where depths range from 0.2 to 2m throughout, with a deep pool (known as Deep Pit) of 20.4m deep between the Island and Shrunamoyle Seal Bank. There is also a channel south of the Middle Bank, with depths ranging from 0.3 to 5.8m. Figure 4.1 shows water depth in the area.

November 2020

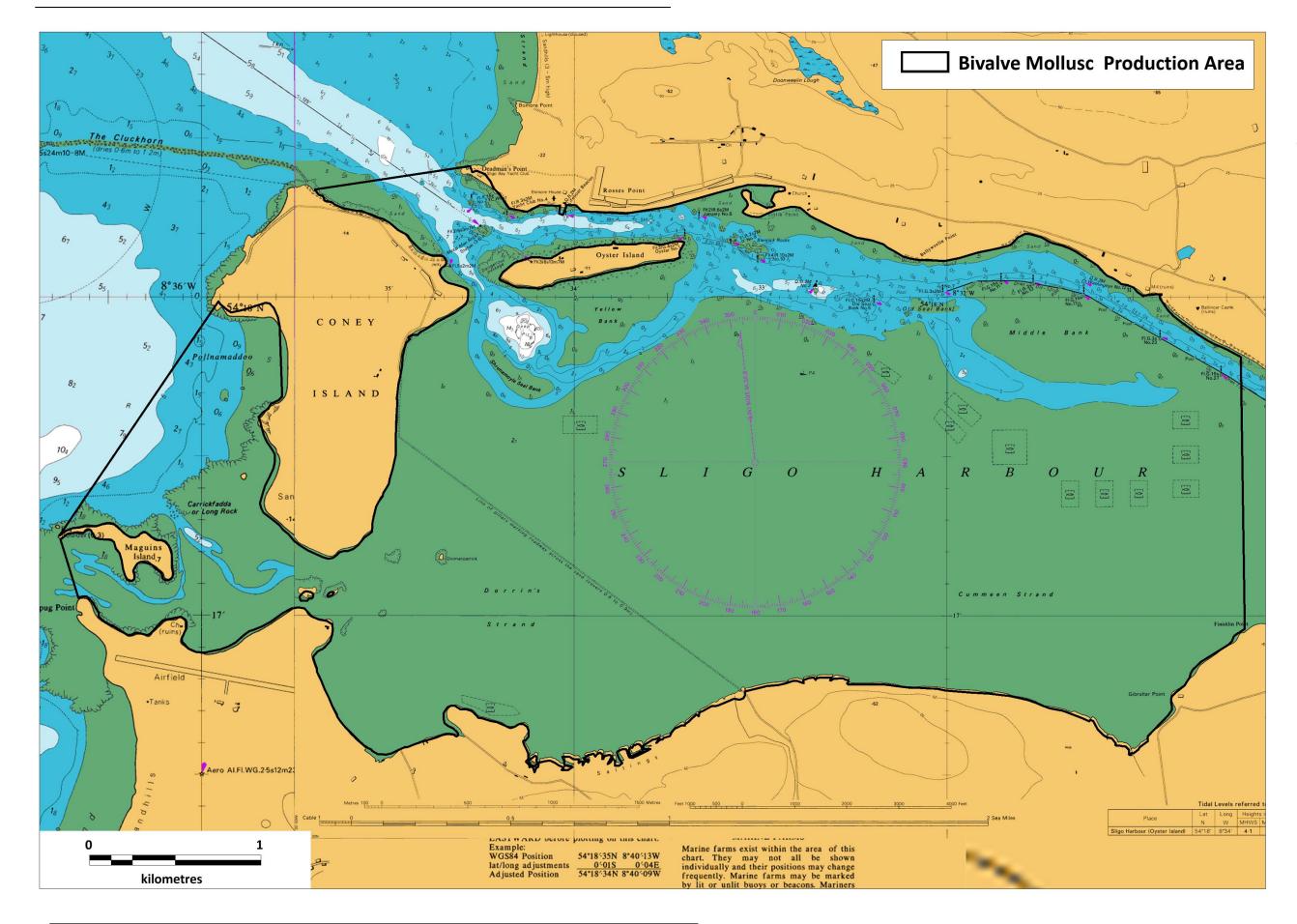


Figure 4.1: Depths in Sligo Harbour (Source: Admiralty Chart 2852).

4.3. Tides & Currents

Predicted spring and neap tidal ranges in Sligo Harbour are in the region of 3.6 and 1.5m respectively (Admiralty Chart 2852). Irish Hydrodata Ltd. (2012) found that current speeds generally ranged from 0.2 to 0.9m/s, with currents at Rosses Point channel reaching 2.5m/s. These velocities compare well with those featured in British Admiralty Chart No. 2858 for the area where velocities of 5 to 6kn (2.57-3.09 m/s) are recorded on ebb and flood tides between Oyster Island and Rosses Point and velocities of 4 to 5kn (2.06-3.57 m/s) within the navigational channel. The direction of flow on an ebb tide is northwesterly along the navigation channel from Sligo town to Rosses Point. Current velocities increase as water is forced through the narrow channels to the north and south of Oyster Island (RPS, 2015). There is a circular flow pattern within the deep pit south of Oyster Island. There is less water movement in the southern half of the bay due to its shallow nature and so current velocities are lower. In the south western end of the bay water moves westerly through the narrow passage between Coney Island and Strandhill. However, current velocities are not as high as at Oyster Island as the volume of water is much less (RPS, 2015). The highest velocities on a flooding tide are once again either side of Oyster Island and between Coney Island and Strandhill (RPS, 2015). The flow direction from Oyster Island is south easterly and easterly from between Coney Island and Strandhill. As with the ebb tide flow rates are lower along the southern half of the bay due to its shallowness (RPS, 2015). The volume of water within the bay ranges from 22 to 39 million m³ from neap HW to spring HW and 7.3 to 2.5 million m³ from neap LW to spring LW (Irish Hydrodata Ltd, 2012).

Table 4.1: Sligo Harbour tidal characteristics (Source: Admiralty Chart No. 2858)

Admiralty Chart 2800 Levels (m CD)	MHWS	MHWN	MLWN	MLWS
Oyster Island	4.1	3.0	1.5	0.5

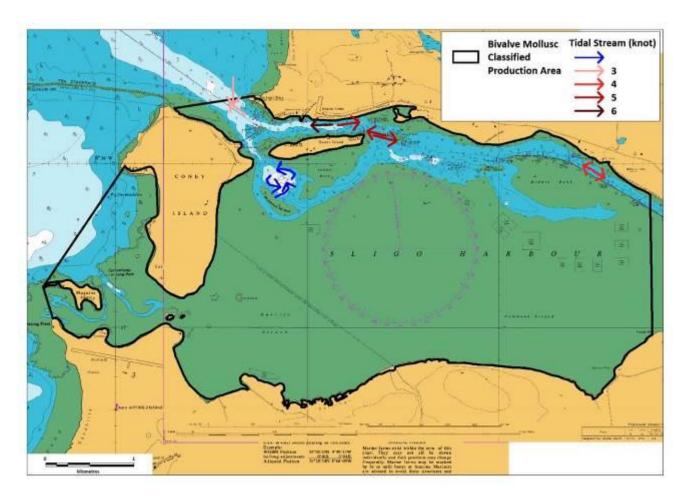


Figure 4.2: Tidal streams within Sligo Harbour (Admiralty Chart No. 2858).

4.4. Wind and Waves

Wind data from 2014 to 2018 from the Finner station (Met Eireann, 2019a) (Co. Donegal, located approximately 28km north east of Sligo Harbour) are displayed in Table 4.2 below and wind roses for each year can be seen in Figure 4.3 below. In 2014, 19.8% of the wind came from the west, while 16.8% came from the south and 16.5% from the east. The strongest winds came from the west (44kn). In 2015, 21.6% of the wind came from the west, 18.4% from the southwest and 18% from the south. The strongest winds (39kn) came from the west. In 2016, 19.4% of the wind came from the east, 19% came from the west and 17.3% came from the south. The strongest winds (38kn) came from the southwest. In 2017, 24.2% of the winds came from the west, with 17.1% coming from the south and 16.6% coming from the southwest. The strongest winds (39kn) came from the northwest. In 2018, 20.3% of the wind came from the west, 16.6% came from the southwest, 16.5% came from the southeast and 16.4% came from the south. The strongest winds (37kn) came from the west. It can be seen from the 2014-2018 wind rose diagram that the prevailing wind direction is southwest.

Table 4.3 shows the seasonal averages from 2014 to 2018. Seasons were selected by grouping the results from the following periods: spring (March-May), summer (June-August), autumn (September-November) and winter (December-February). Seasonal averages over the past 5 years indicate that winds are typically strongest in the winter months (12.6kn), followed by spring (10.2kn) and autumn (10kn), with 9.1kn in summer.

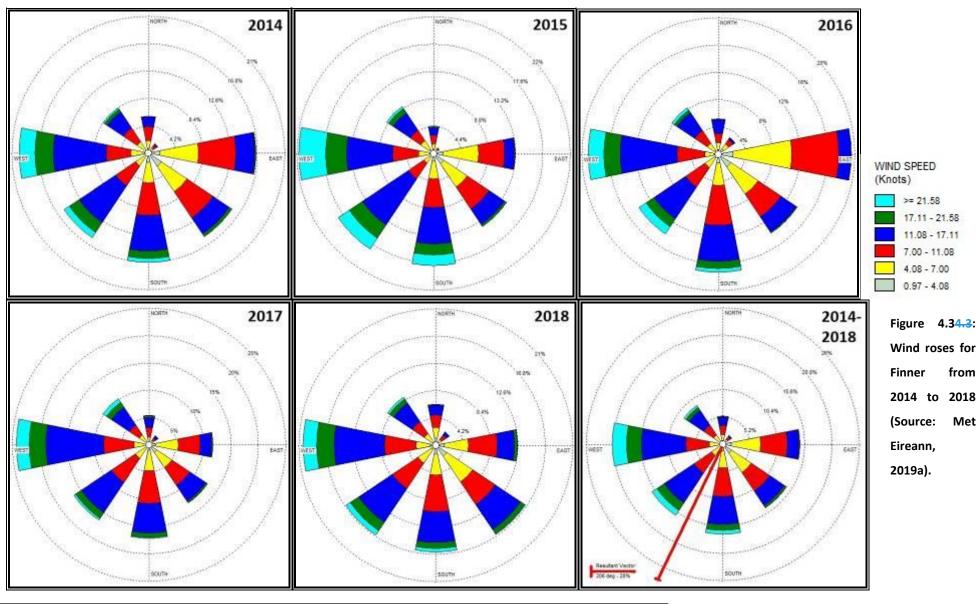
November 2020

	2014		2015		2016		2017		2018	
Month	Mean Speed (knots)	Max 10- min Mean Direction (°)	Mean Speed (knots)	Max 10- min Mean Direction (°)	Mean Speed (knots)	Max 10-min Mean Direction (°)	Mean Speed (knots)	Max 10- min Mean Direction (°)	Mean Speed (knots)	Max 10- min Mean Direction (°)
January	11.7	195	16.4	251	12.5	188	10.9	209	14.5	213
February	14.0	213	10.9	216	12.1	207	12.2	185	11.1	218
March	11.3	208	13.8	222	10.2	198	10.8	177	9.8	144
April	9.8	183	9.0	224	10.2	195	10.8	255	9.8	168
May	8.9	202	13.0	235	8.6	188	8.1	205	8.2	194
June	7.3	203	10.3	249	8.0	219	10.2	227	7.8	236
July	8.6	235	9.4	223	9.5	254	8.9	227	7.3	236
August	10.9	243	8.7	239	10.2	212	9.5	247	9.6	261
September	6.3	206	8.8	220	9.7	198	10.5	240	10.8	270
October	11.0	181	8.2	184	8.0	153	12.3	232	11.5	234
November	8.0	183	14.1	234	8.8	184	10.8	265	10.9	165
December	14.8	237	14.1	190	11.1	183	11.3	249	11.0	214

Table 4.2: Wind speed and direction data for Finner from 2014-2018 (Source: Met Eireann, 2019a).

Degrees Direction Key: 0°/360° = N; 23° = NNE; 45° = NE; 68° = ENE; 90° = N; 113° = ESE; 135° = SE; 158° = SSE; 180° = S; 203° = SSW; 225° = SW; 248° = WSW; 270° = W;

293° = WNW; 315° = NW; 338° = NNW


November 2020

Season	2014	2015	2016	2017	2018	5 Year Average
Winter	13.5	13.8	11.9	11.5	12.2	12.6
Spring	10.0	11.9	9.7	9.9	9.3	10.2
Summer	9.0	9.5	9.2	9.5	8.2	9.1
Autumn	8.5	10.4	8.8	11.2	11.1	10.0

 Table 4.3: Seasonal averages (knots) for Finner wind data (Source: Met Eireann, 2019a).

Sea Fisheries Protection Authority

November 2020

AQUAFACT JN1520

86

Wind conditions affect the hydrodynamic conditions in Sligo Harbour by generating wind-induced currents and waves. Of these phenomena, wind-induced waves are an important factor in the process of sediment resuspension and transport. Wind waves are produced by the local prevailing wind. They travel in the direction of the prevailing wind, *i.e.* a southwesterly wind will produce northeasterly moving waves. The height of wind waves depends on:

- the strength of the wind;
- the time the wind has been blowing; and
- the fetch.

4.5. River Discharges

Sligo Harbour drains a catchment of 448km², 89% of this flows through the Garavogue River. The Garavogue River is approximately 5km long and flows from Lough Gill into the harbour. The Garavogue River has a mean flow of 12.7 m³/s, with flows generally ranging from 2 to 60 m³/s (Irish Hydrodata Ltd., 2012). Just north of the Garavogue River, the Copper River flows into the harbour and further north the Doonally Stream enters the harbour. The Doonally Stream drains an area of 19.7 km². There is one small stream flowing into the harbour from the north shore and this drains a catchment of approximately 9.6km². Five small streams flow into Sligo Harbour from the south shore draining a catchment of 18.5km².

Lough Gill is a medium sized lake of 13.81km² and is partially fed by small streams which flow directly into the lake. However, the majority of the inflow comes from the Bonet River which accounts for 73% of the Garavogue's catchment. Figure 4.4 shows the Sligo Harbour catchment and rivers and lakes. There is a hydrometric station on the Bonet River in Dromahair, operated by the OPW and this can also be seen in Figure 4.4. The Bonet River has a 95% flow of 1.039 m³/s for the years 1986 to 2013. The annual average max flow for the Bonet is 108.3 m³/s (years 1957-2016) with a highest recorded flow of 188 m³/s in 1987 (OPW, 2019). Figure 4.5 shows the averaged and total flow of the Bonet River at Dromahair from 2015 to 2018. Over the past 4 years, May to July has had the least flow with flow levels at their highest from November to February/March.

The current (2010-2015) WFD status of Sligo Harbour and its associated freshwater sources can be seen in Figure 4.4. Of the river and lake systems flowing directly into the Sligo Harbour BMCPA, the Garavogue is of Poor status and the Doonally Stream is of Good status. Lough Gill is of Poor status. The streams flowing into the harbour from the north and south shores are not assigned a WFD status. The Bonet River ranges from Poor where it enters Lough Gill to Moderate and then Good in the upper reaches. Sligo Harbour is a transitional water body and is currently assigned as Good and the Sligo Bay coastal waterbody has a High

status.

The Garavogue, sections of the Bonet and most streams/rivers flowing into Lough Gill are at risk of not meeting their WFD objectives as is Lough Gill itself.

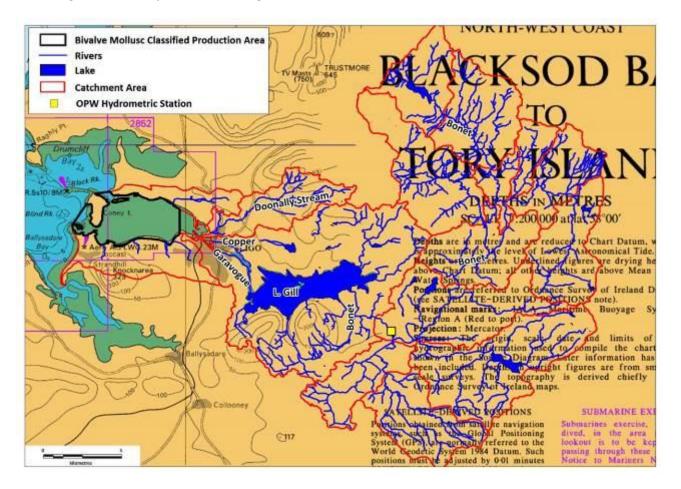


Figure 4.4: Rivers, streams and lakes in the catchment areas including hydrometric station locations (Source: EPA, 2019).

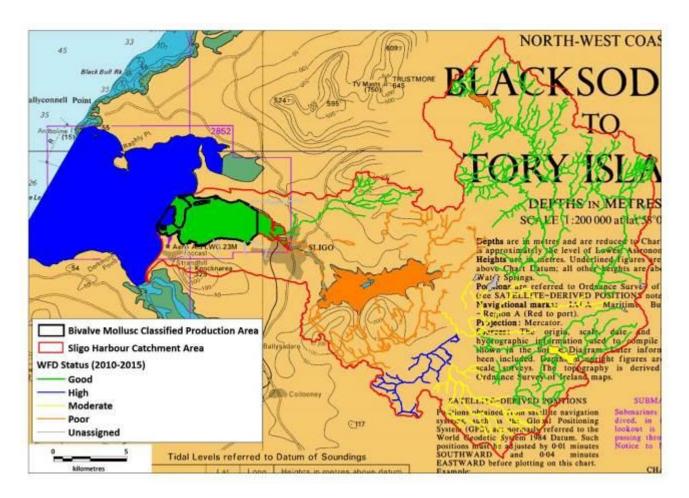
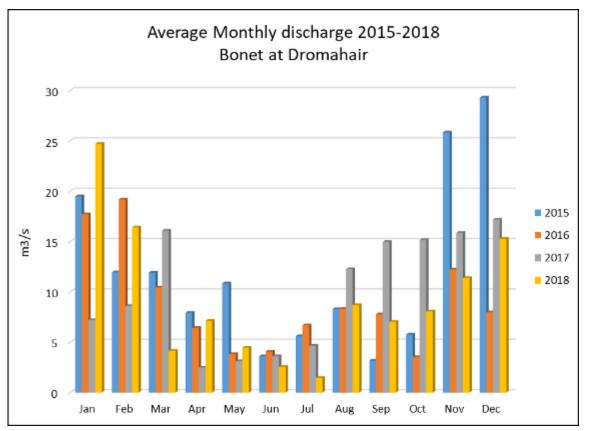



Figure 4.5: WFD Status of the coastal, transitional, lake and river waterbodies in the catchment area (Source EPA, 2019).

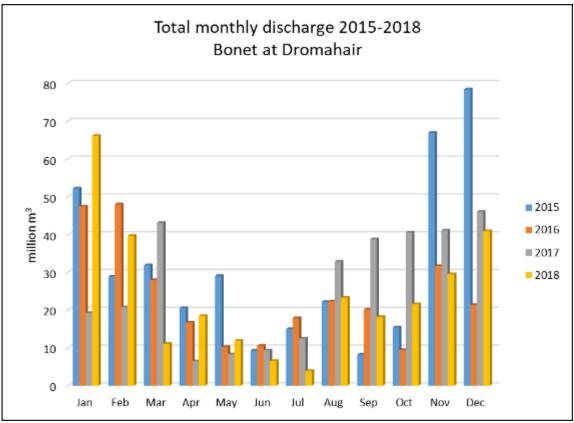


Figure 4.6: Average and monthly flow data from the Bonet River at Dromahair (Source: OPW, 2019). *Total discharge calculated from monthly average.

4.6. Rainfall Data

4.6.1. Amount & Time of Year

Figure 4.7 shows the average monthly rainfall data for Ireland (Met Eireann, 2019b) from 1981 to 2010. The wettest months in the Sligo Harbour region over this 30-year period were October to January with the driest months from April to July. Table 4.4 shows the 30-year average monthly rainfall at the Belmullet station which is located c. 92km west of the Sligo Harbour production area (Figure 4.8 shows the location of the Belmullet station). During the period 1981 to 2010, average rainfall at Belmullet was lowest in May (70.4mm) and highest in October (145.9mm). The greatest daily total ranged from a low of 25.6 in March to a high of 79.6mm in October. Table 4.5 shows the seasonal averages at Belmullet from 1981 to 2010. Lowest average rainfall over the 30 year period was in spring (80.5mm) with the highest average rainfall experienced in autumn (127.2mm).

Average Rainfall (mm)	Month	Greatest Daily Total (mm)
134.0	January	44.7
97.1	February	31.3
99.2	March	25.6
72.0	April	25.9
70.4	May	42.2
72.1	June	38.9
79.0	July	33.2
101.9	August	49.5
101.8	September	62.6
145.9	October	79.6
134.0	November	43.0
137.4	December	41.7
1244.8	Year	79.6

Table 4.4: Monthly a	verage rainfall at Belmullet	from 1981 to 2010 (Sou	rce: Met Eireann, 2019c).

 Table 4.5: Average seasonal rainfall values (mm) from 1981-2010 at Belmullet (Source: Met Eireann, 2019c).

Season	Average
Spring	80.5
Summer	84.3
Autumn	127.2
Winter	122.8

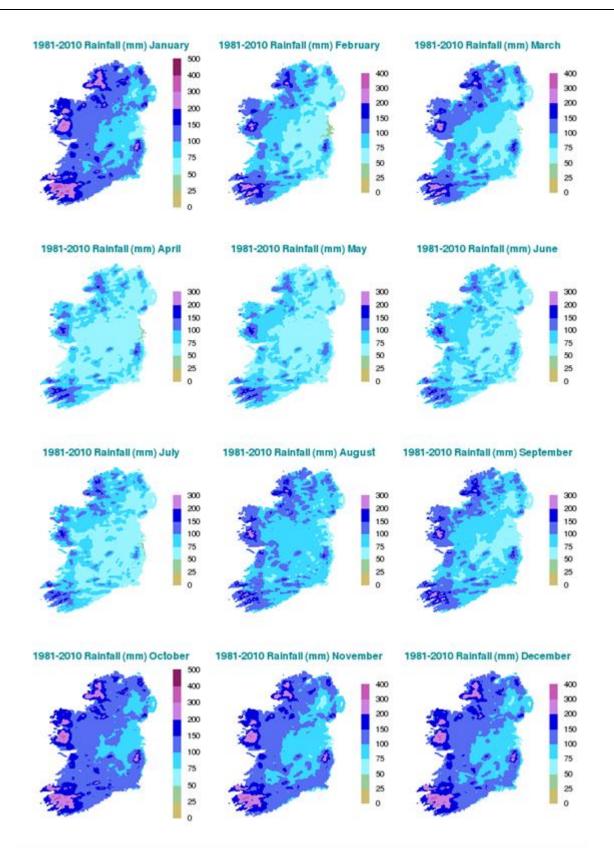
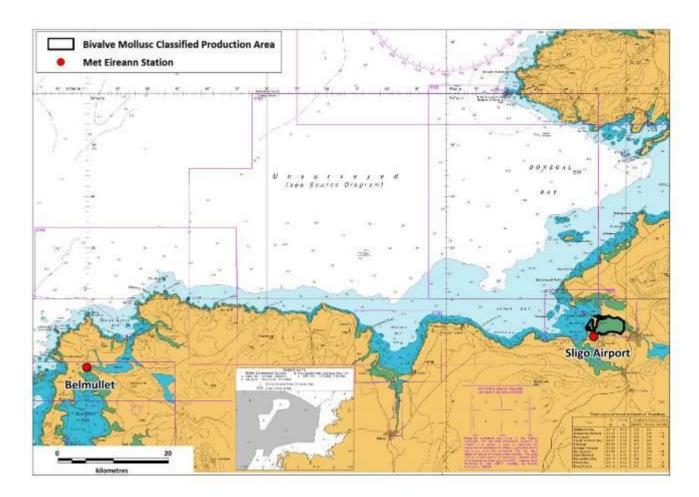



Figure 4.7 Average monthly rainfall (mm) data from 1981 to 2010 for Ireland (Source: Met Eireann, 2019b).

Figure 4.8: Location of Met Eireann weather stations in relation to the Sligo Harbour production area.

Table 4.6 shows total monthly rainfall at the Sligo Airport Met Eireann station (see Figure 4.8), located at the entrance to Sligo Harbour production area from 2014 to 2018 (Met Eireann, 2019d).

Sligo Airport weather station is located at Strandhill along the southwestern shore of Sligo Harbour. Maximum monthly rainfall was in December 2015 (267.6mm) and the lowest monthly rainfall was September 2014 (8.9mm). The 5-year average monthly rainfall ranged from a low of 56.6mm in June to a high of 170.6mm in January. Annual averages ranged from 86.5mm in 2018 to 122.7mm in 2015.

Table 4.7 shows the total seasonal rainfall at Sligo Airport from 2014-2018 (Met Eireann, 2019d). The following seasonal fluctuations were observed from 2014-2017 (as a complete data set was not available for 2018, this year was excluded from the summary): In 2014, spring was the driest season and winter was the wettest, in 2015 summer was the driest and winter was the wettest. In 2016, spring was the driest and winter was the wettest and in 2017 spring was the driest and autumn was the wettest. Over the four years spring 2017 was the driest season and winter 2014 was the wettest season.

Year	2014	2015	2016	2017	2018	Monthly 5-yr Average
Jan	220.6	193.8	184.3	46.1	208	170.6
Feb	175.8	87	128.7	75.2	93.1	112.0
Mar	78.7	109.5	90.7	106.5	36.9	84.5
Apr	34.5	84.5	64.7	23.7	76.3	56.7
May	94.9	116.5	55.4	66.6	48.4	76.4
Jun	48.7	45.6	78	79.5	31.2	56.6
Jul	65.9	118.3	85.1	88.5	64.1	84.4
Aug	101.7	97.8	93.2	110.3	119.2	104.4
Sep	8.9	62.6	119.3	155.6	78.8	85.0
Oct	101.1	64.8	44.4	88.2	80.2	75.7
Nov	131	224.8	90.9	137.2	115.2	139.8
Dec	173.3	267.6	69.3	151.4	n/a	165.4
Annual Average	102.9	122.7	92.0	94.1	86.5	-

Table 4.6: Total monthly rainfall (mm) data at Sligo Airport Co. Sligo, from 2014 to 2018 (Source: Met Eireann, 2019d).

Table 4.7: Total seasonal rainfall (mm) at Sligo Airport from 2014-2018 (Source: Met Eireann, 2019d).

Station	Season/Year	2014	2015	2016	2017	2018
Sligo Airport	Spring	208.1	310.5	210.8	196.8	161.6
	Summer	216.3	261.7	256.3	278.3	214.5
	Autumn	241.0	352.2	254.6	381.0	274.2
	Winter	569.7	548.4	382.3	272.7	301.1#

No data available for December 2018.

4.6.2. Frequency of Significant Rainfalls

Figure 4.9 shows the average monthly rainfall at Belmullet from 1981-2010 and Figure 4.10 shows the 5 year monthly average rainfall at Sligo Airport weather station. Over the 30-year period from 1981 to 2010, October was the wettest month followed closely by December and then November and January. Over this period, October followed by September had the greatest daily rainfall. Over the past 5 years at Sligo Airport, January has been the wettest month followed closely by December, with November the next wettest. April and June were the driest months followed by May.

For the 5-year 2014-2018 period, average greatest daily rainfall at Sligo Airport was 18.6mm, with a maximum of 51.3mm. Over the same period, the number of wet days (rainfall >1mm) a month averaged at 16 with the maximum number of 26 days/month.

Met Eireann have developed a depth duration frequency model for the estimation of point rainfall frequencies (Fitzgerald, 2007; Met Eireann, 2019e). For a 1 in 100 year return period, 36mm of rain would be expected over 1 hour and 95.3mm over 24 hours. Whiles these would be extreme uncommon events, the model predicts that once a year 10.2mm would fall in 1 hour and 34.3mm over a 24 hour period.

Increased faecal contamination of coastal waters is typically associated with high rainfall and storm events through surface water run-off from livestock or other animals present and through sewer and waste water treatment plant overflows (Mallin *et al.*, 2001; Lee & Morgan, 2003). It is therefore expected that run-off due to rainfall will be higher during the November to February period. However, as can be seen in the data below, extreme rainfall events leading to episodes of high run-off can occur in most months of the year and it is therefore not just the winter months that are at risk of increased contamination. When these occur during generally drier periods in spring and summer months, they are likely to carry higher loadings of faecal material which has accumulated on pastures where greater numbers of livestock are present.

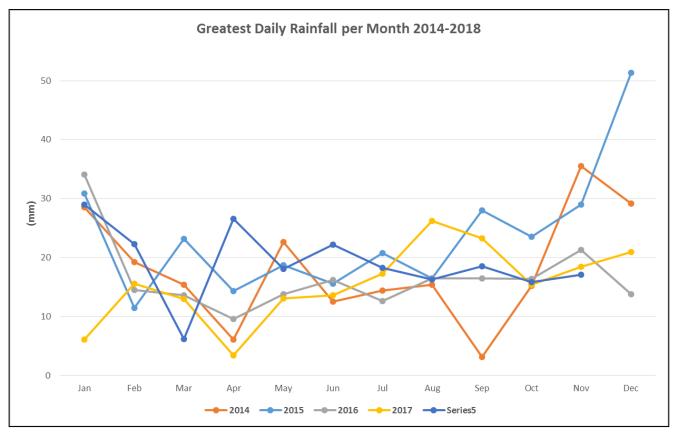


Figure 4.9: Greatest daily rainfall per month for Sligo Airport from 2014-2018 (Source: Met Eireann, 2019c).

Figure 4.10: 5 year monthly average rainfall (mm) at Sligo Airport weather station from 2014-2018 (Source: Met Eireann, 2019d).

4.7. Salinity

The Sligo Harbour production area has a highly variable salinity due to tidal and freshwater influences. The salinity is effected by the stage of the tide and the flow rate of the Garavogue, along with a handful of other small rivers. The salinity at Rosses Point can vary from 25 to 32 PSU, while at the eastern end of the bay at the mouth of the Garavogue salinity can range from 0 to 17 PSU (AQUAFACT, 2014a, b, c, d;. 2015a, b, c, d;. 2016a, b, c, d;. 2017a, b, c, d;. 2018a, b, c, d).

4.8. Turbidity

The turbidity of Sligo Harbour can vary significantly depending on the tide, levels of freshwater input and weather conditions. Turbidity at Rosses Point can range from 0 to 10.7 NTU, while levels at the eastern inner extent of the bay can range from 0 to 191.1 NTU at Deepwater Quay and 0 to 311.9 NTU at Cummeen Strand (AQUAFACT, 2014a, b, c, d;. 2015a, b, c, d;. 2016a, b, c, d;. 2017a, b, c, d;. 2018a, b, c, d).

4.9. Residence Time

Residence time can be defined as the average amount of time that a molecule of water spends in a

particular system. Residence times are important because of the way they govern productivity rates as well as the vulnerability to water quality degradation. The currents within the bay are dominated by the shallow bathymetry and generally flow parallel to the channel. Irish Hydrodata (2012) carried out a modelling study of the estuary and this study estimated the flushing time estimated to be about 13 days. However, the report goes on to say that *"even though the estuary inside Rosses Point almost empties with each tide, the data suggested that there may be a slow exchange with the open coastal waters. This was not fully proven however, as no field data was obtained in the outer bay area"*. Given the fact that a considerable area of Sligo Bay dries out at low water, it seems highly unlikely that a figure of as high as 13 days represents the flushing time of the bay.

Mr. Tony Cawley of Hydroenvironmental Ltd., a mathematical modeller, examined the hydraulic residence time (HRT) of Sligo Harbour based on the volumes in the bay at Spring and Neap tides and calculated that for Spring tides, the HRT is 13.25 hrs and for Neaps, it is 18.6 hrs. A flushing time of 24hrs is therefore used.

4.10. Discussion

The majority of the bay is made up of intertidal sand and mudflats. A navigational channel runs northwesterly from Sligo town towards Oyster Island following the northern shore with a retaining wall as far as Ballyweelin Point. Depths within this channel Range from 0.7 to 10m. Sligo Harbour has a flushing time of 24 hrs which indicates a high exchange rate of water in the bay and this would cause contamination entering the area to be flushed out of it in a short period of time. The main direction of water flow is to the northwest during the mid-ebb period. Current flows during a flooding tide are mainly south-easterly in direction. Freshwater input from the Garavogue is the main source of salinity variation with salinity ranging from 0-17 PSU near its mouth and 25-32 PSU at Rosses Point.

5. Shellfish and Water Sampling

5.1. Historical Data

5.1.1. Shellfish Water Quality

The Marine Institute carries out quarterly water quality monitoring as part of the Shellfish Waters Directive in Sligo Harbour. Sampling is confined to the oyster aquaculture area. The EPA carries out monitoring under the Water Framework Directive. However, *E. coli* is not routinely measured under these programmes.

As part of Sligo Main Drainage project AQUAFACT has been taking quarterly *E. coli* samples at a number of locations in Sligo Harbour since 2014 (AQUAFACT, 2014 a, b, c, d; AQUAFACT, 2015 a, b, c, d; AQUAFACT, 2016 a, b, c, d; AQUAFACT, 2017a, b, c, d; AQUAFACT, 2018a, b, c, d). Station locations can be seen in Figure 5.1 and Table 5.1 provides a summary of the results (Appendix 1 contains the complete results). Table 5.2 shows the averaged seasonal *E. coli* levels from 2014 to 2018 and Figure 5.2 shows the seasonal averages in graphical form.

A significant difference was found between the *E. coli* results from the 8 stations (one-way ANOVA, p = 0.0000003, Appendix 2). A significant difference was observed between Station 1 in the Garavogue and Stations 3 (2 sample t-Test assuming equal variance, p = 0.0001, Appendix 2), 4 (2 sample t-Test assuming equal variance, p = 0.000002, Appendix 2), 5 (2 sample t-Test assuming equal variance, p = 0.000003, Appendix 2), 6 (2 sample t-Test assuming unequal variance, p = 0.0003, Appendix 2) and 7 (2 sample t-Test assuming unequal variance, p = 0.0003, Appendix 2) and 7 (2 sample t-Test assuming unequal variance, p = 0.0003, Appendix 2) and 7 (2 sample t-Test assuming unequal variance, p = 0.02, Appendix 2).

A significant difference was observed between Station 2 in the Garavogue and Stations 3 (2 sample t-Test assuming equal variance, p = 0.007, Appendix 2), 4 (2 sample t-Test assuming equal variance, p = 0.00009, Appendix 2), 5 (2 sample t-Test assuming equal variance, p = 0.0004, Appendix 2) and 6 (2 sample t-Test assuming equal variance, p = 0.01, Appendix 2).

A significant difference was observed between Station 8 (mouth of the harbour) and Stations 3 (2 sample t-Test assuming equal variance, p = 0.003, Appendix 2), 4 (2 sample t-Test assuming unequal variance, p = 0.0001, Appendix 2), 5 (2 sample t-Test assuming equal variance, p = 0.0003, Appendix 2) and 6 (2 sample t-Test assuming equal variance, p = 0.0003, Appendix 2) and 6 (2 sample t-Test assuming equal variance, p = 0.005, Appendix 2).

These data show a spike in *E. coli* levels in the dock area and on the northeastern coastline of Sligo Harbour. Significant differences in *E. coli* levels were evident between the dock area (Stations 3, 4 and 5) and northeastern shoreline (Station 6) and the 2 stations further upstream in the Garavogue (Stations 1 and 2) and the station at the mouth of the harbour (Station 8). The mean and the median *E. coli* levels showed an increase in *E. coli* levels from the Garavogue River, peaking at the dock and northeastern coastline area and decreasing again moving further out towards the mouth.

When these data were examined for seasonality, no clear pattern emerged and no significant difference was found between the results by season (one-way ANOVA, p = 0.4373, Appendix 2). St. 5 in the Garavogue had highest average *E. coli* levels in Winter followed by Summer, St. 6 on the north shore had highest average *E. coli* levels in Spring followed by Autumn, St. 7 on the south shore had highest levels in Autumn followed by Winter and St. 8 levels at the mouth of the harbour had highest average *E. coli* levels in Winter 5.3 shows a boxplot of *E. coli* results by season. The high maximum results during each season appear to be isolated events with far lower variability seen between seasons when the average and quartile values are examined.

Figure 5.1: Sligo Main Drainage Water Sampling sites.

Table 5.1: Faecal coliforms at in Sligo Harbour from	n 2014-2018 (Source: AQUAFACT).
--	---------------------------------

Station	Mean	Median	Min	Max
Station 1	55.85	14	2	428
Station 2	351.6	28.5	2	5475
Station 3	778.58	292	10	7270
Station 4	552	307	46	2359
Station 5	1386.35	220	31	8164
Station 6	1194.1	193	0	9804
Station 7	602.35	98	0	5172
Station 8	131.25	26	0	677

Table 5.2: Averaged seasonal *E. coli* levels from 2014-2018.

Season	Spring	Summer	Autumn	Winter
Station 1	30.6	124	50.4	18.4
Station 2	28.8	36	36.4	1305.2
Station 3	554.2	1664.8	631.6	135
Station 4	862	327.4	414.4	604.2
Station 5	409	1698.6	1076.4	2361.4
Station 6	2561.4	86	1719	410
Station 7	155.6	92.4	1400.6	760.8
Station 8	124.4	158.4	75.4	166.8
Overall Average	590.75	523.45	675.525	720.225

November 2020

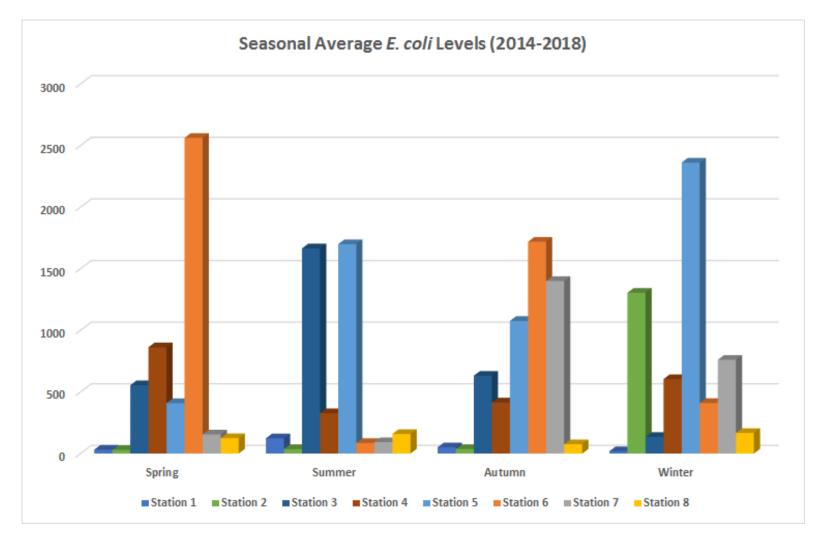


Figure 5.2: Averaged seasonal *E. coli* levels from 2014 to 2018 (Source: AQUAFACT).

November 2020

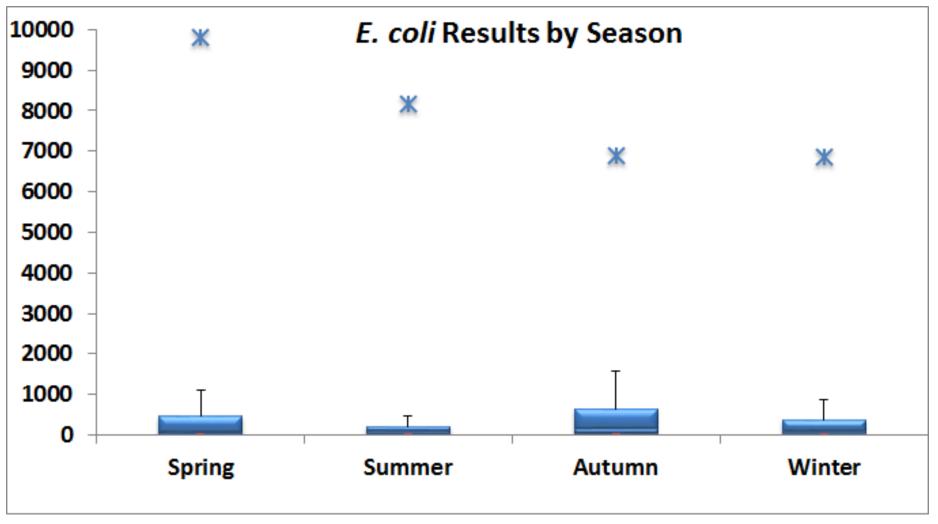


Figure 5.3: Boxplot of *E. coli* results by season.

5.1.2. Shellfish Flesh Quality

In accordance with Regulation (EU) 2017/625 and the subsequent implementing regulation (EU) 2017/627 the Sea Fishery Protection Authority is required to classify bivalve mollusc production areas and to fix the boundaries thereof. The process involves regular sampling of shellfish from each area to be classified in order to establish levels of microbiological contamination which subsequently determines which classification should be awarded for that particular area. The Sea Fishery Protection Authority currently sample shellfish flesh at one location in the Sligo Harbour production area for classification purposes. Figure 5.4 shows this location of this sampling site Table 5.3 shows the coordinates. The Sea Fishery Protection Authority monitored clams in Sligo Harbour up until January 2015, after which point clams were declassified in Sligo Harbour due in part to disease and mortality issues and a lack of current production. The location of the clam monitoring site can also be seen in Figure 5.4 and the coordinate is shown in Table 5.3. Clams may be reclassified in the future.

Table 5.3: Coordinates of sampling sites within the Sligo Harbour Production Area.

Sample Code	Species	Latitude	Longitude
SO-SH-SH	Pacific Oysters	54.293461	-8.534783
SO-SH-SH	Clams	54.291667	-8.5219445

The Regulations stipulate that the competent authority must monitor the levels of E.*coli* within the harvesting area and that according to the sample results, must classify the area as being one of three categories; A, B or C. Table 5.4 summarises this system. Table 5.5 shows the current and historical (back to 2014) classifications within Sligo Harbour. For the 2018-2019 period, Sligo Harbour is classified as B for Oysters.

Classification			Permitted Levels	Outcome
А	A <u></u>	≤230	Not exceeding 230 <i>E. coli</i> per 100 g flesh and intravalvular liquid in 80% of the samples in the review period	consumption if end product standard
В	} ≤	≤4600	per 100 g flesh and intravalvular liquid in 90% of	Must be subject to purification, relaying in Class A area (to meet Category A requirements) or cooked by an approved method.
C	2	≤46000	flesh Not exceeding 46,000	Must be subject to relaying for a period of at least 2 months or cooked by an approved method.
A	bove	46,000 E.a	coli/100g flesh	Prohibited. Harvesting not permitted

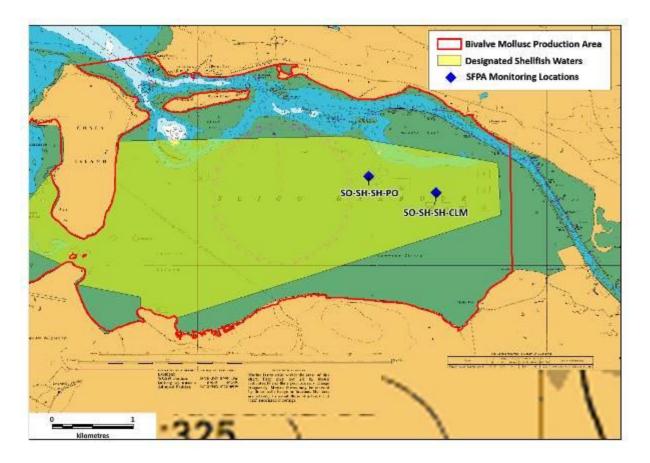


Figure 5.4: Locations of SFPA shellfish monitoring points for classification purposes.

Table 5.5: Current and historical classification of shellfish beds in Sligo Harbour (2014 – 2019).

Boundaries	Bed Name	Species	Classification					
			2014	2015	2016	2017	2018	2019
Deadman's Point to Killaspug	All Beds	Oysters	В	В	В	A**	В	В
Point		Clams	В	В	В*	N/A	N/A	N/A

* Dormant Fishery. Contact SFPA if re-activating.

**Seasonal A 01 July- 01 Feb drops to Class B at other times.

Tables 5.6 and 5.7 list the *E. coli* results for oysters and clams from Sligo Harbour from 2014 to January 2019 (where available). Figures 5.5 and 5.6 show these data in graphical form.

As shown in Table 5.5 above, Sligo Harbour has had a **B** classification for Clams from 2014 to 2016, in 2016 the fishery was declared dormant and has not been sampled since. The monthly classification trends for clams can be seen in Table 5.6 and Figure 5.5. Sligo Harbour oysters had a seasonal **A** classification in 2017 from 01 July to 01 February, for all other years between 2014 and 2018 it had a **B** classification. The monthly classification trends for oysters can be seen in Table 5.6.

Table 5.8 shows the summary statistics for the *E. coli* historical data from the 2 shellfish monitoring sites from 2014 to January 2019. The geometric mean of *E. coli* levels was highest for Clams, however, Clams were only monitored from January 2014 to January 2015. Table 5.9 shows the variations of the annual geometric means of *E. coli* for the shellfish beds that had at least 5 samples per year from the year 2014. Figure 5.7 shows the trend in geometric mean from 2014 to 2018 for both species in Sligo Harbour. The geometric mean for oysters ranged from 29.1 MPN/100ml in 2018 to 61.8 MPN/100ml in 2014. The geometric mean for clams could only be calculated for 2014 due to insufficient data and was 194.8 MPN/100ml.

There was no statistical difference between the oyster *E. coli* results and season (one-way ANOVA, p = 0.9215, Appendix 2).

Date	MPN <i>E. coli</i> /100g	Category
13-Jan-14	1100	В
27-Aug-14	130	А
29-Oct-14	330	В
24-Nov-14	330	В
4-Dec-14	18	А
22-Jan-15	490	В

Table 5.6: E. coli results from Sligo Harbour Clams from 2014 to January 2015 (Source: SFPA).

November 2020

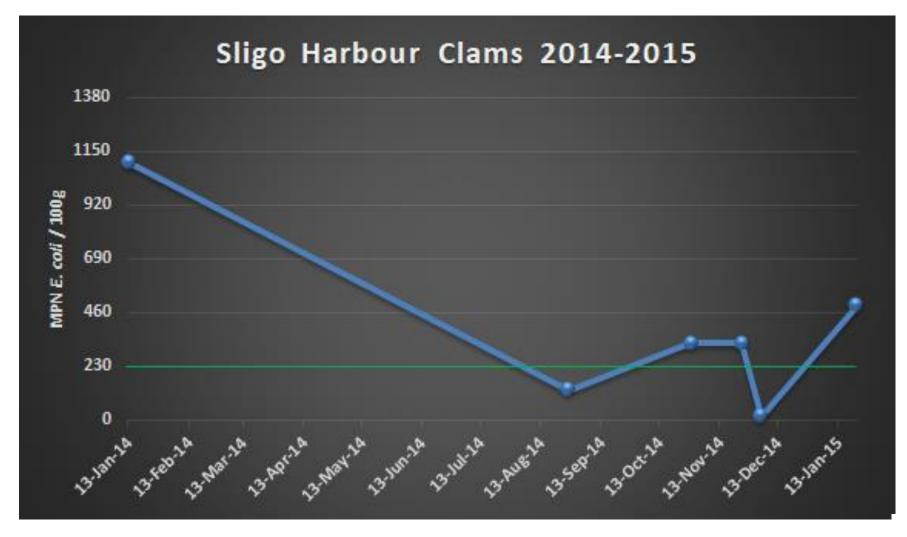


Figure 5.5: E. coli results from Clams at Sligo Harbour from 2014 to January 2015 (Source: SFPA).

Date	MPN <i>E. coli</i> /100g	Category	Date	MPN <i>E. coli</i> /100g	Category
13-Jan-14	50	А	13-Sep-16	45	А
20-Feb-14	50	А	27-Oct-16	18	А
29-Apr-14	20	А	14-Nov-16	130	А
27-May-14	170	А	19-Dec-16	110	А
30-Jun-14	20	А	9-Jan-17	78	А
27-Aug-14	68	А	27-Feb-17	18	А
29-Oct-14	110	А	14-Mar-17	78	А
24-Nov-14	45	А	19-Apr-17	18	А
4-Dec-14	230	А	8-May-17	40	А
22-Jan-15	20	А	24-Jul-17	460	В
25-Feb-15	18	А	16-Aug-17	40	А
19-Mar-15	490	В	18-Sep-17	78	А
29-Apr-15	18	А	5-Oct-17	18	А
20-May-15	1700	В	6-Nov-17	78	А
30-Jun-15	18	А	4-Dec-17	490	В
23-Jul-15	20	А	14-Dec-17	20	А
20-Aug-15	20	А	15-Jan-18	18	А
28-Sep-15	130	А	19-Feb-18	45	А
21-Oct-15	20	А	27-Mar-18	20	А
24-Nov-15	45	А	15-Apr-18	18	А
14-Dec-15	78	А	28-May-18	40	А
20-Jan-16	18	А	26-Jun-18	18	А
23-Feb-16	45	А	18-Jul-18	18	А
10-Mar-16	18	А	14-Aug-18	18	А
18-Apr-16	78	А	23-Sep-18	45	А
9-May-16	20	А	8-Oct-18	20	А
14-Jun-16	130	А	26-Nov-18	78	А
4-Jul-16	230	А	10-Dec-18	78	А
9-Aug-16	18	А	7-Jan-19	18	А

Table 5.7: E. coli results from Sligo Harbour oysters from 2014 to January 2019 (Source: SFPA).

November 2020

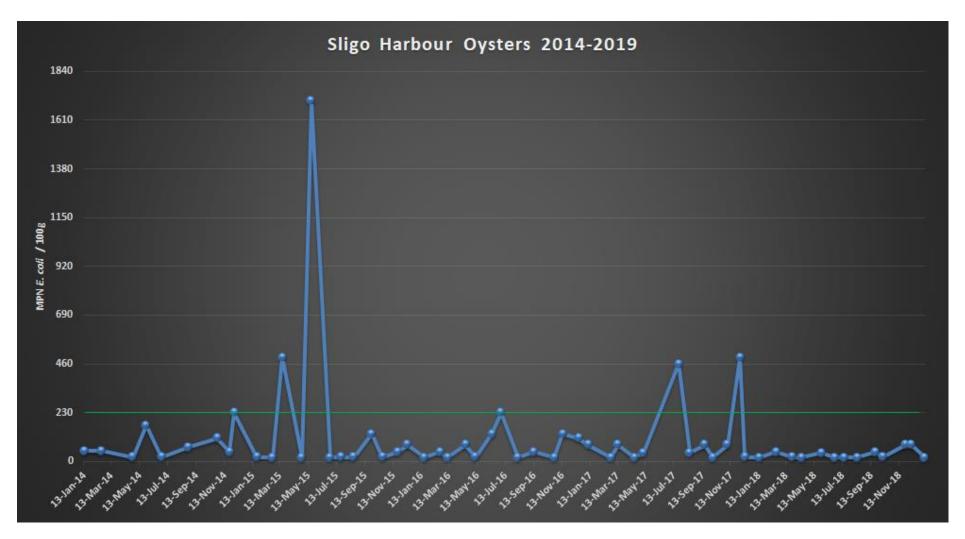


Figure 5.6: *E. coli* levels from oysters at Sligo Harbour from 2014 to 2019 (Source: SFPA).

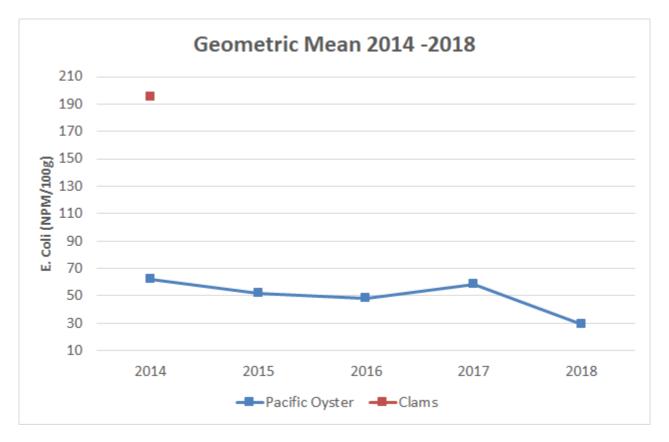


Figure 5.7: Trend in geometric mean of *E. coli* levels from 2014 to 2018 for all both species in Sligo Harbour.

Table 5.8: Summary statistics of historical *E. coli* data monitored from shellfish beds in Sligo Harbour.

Code	Species	Date of 1st Sample	Date last Sample	Minimum <i>E. coli</i> (MPN/100g)	Maximum <i>E.</i> <i>coli</i> (MPN/100g)	Median <i>E. coli</i> (MPN/100g)	Geometric Mean <i>E. coli</i> (MPN/100g)
SO-SH-SH-PO	Pacific Oyster	13/01/2014	07/01/2019	18	1700	42.5	46.7
SO-SH-SH	Clams	13/01/2014	22/01/2015	18	1100	330	227.1

Table 5.9: Variation of annual geometric means of *E. coli* (MPN/100g) from shellfish beds monitored in Sligo Harbour.

Code	Species	2014	2015	2016	2017	2018
SO-SH-SH-PO	Pacific Oyster	61.8	51.6	47.8	58.3	29.1
SO-SH-SH	Clams	194.8				

In addition to *E. coli* monitoring carried out by SFPA, the Marine Institute (MI) conducts monthly monitoring for the presence of toxin producing phytoplankton in shellfish waters, including *Alexandrium spp* and *Dinophysis spp.* and for marine biotoxins (including DSP, PSP and ASP) in shellfish flesh. The MI also monitors shellfish flesh for chemical contaminants *e.g.* heavy metals, organochlorides, polychlorinated biphenyls (PCB), polycyclic aromatic hydrocarbons (PAH), pentachlorophenol (PCP) and Tributyl Tin Oxide (TBTO).

Over the period 2014 to 2018, there have been 6 biotoxin related closures. There have been no closures since May 2015 for Pacific Oysters.

5.1.3. Norovirus (NoV)

Norovirus contamination – Sligo Harbour classified production area

Oysters from Sligo Harbour have been tested by the Marine Institute using the ISO standard method, ISO 15216-1:2017¹ for norovirus² since November 2015 during the high risk winter months (October to April). This sampling has been conducted by the Producers in the area as part of a number of research projects. The samples have been collected from two separate locations within the harbour SH1 and SH2.

a) SH1

Samples have been collected for norovirus testing from this part of the classified production area since November 2015. However, regular sampling has occurred since December 2017 until April 2020 (n = 49) which provides a repeated assessment of the rate of norovirus contamination in the area over three consecutive winter periods. Having norovirus data for three consecutive winters provides a very robust data set for understanding the rate of norovirus contamination in a production area. Table 5.10 outlines the geometric mean norovirus concentrations observed for the months of October through to April over the winters 2017/18, 2018/19 and 2019/20.

Table 5.10: Norovirus	prevalence and	concentrations in SH1	during winter n	nonths (2017 – 2020)
	prevalence ana			

Details	Observation
Total number of samples	49
% Positive samples	95.9%
% samples >1000 copies/g	40.8%
Geometric mean conc.	580 copies/g
Minimum conc.	Not detected
Maximum conc.	13048 copies/g

b) SH2

Samples have been collected from this part of the classified production area on a much less frequent basis compared to SH1. Samples (n = 10) have been collected between the period of December 2019 until March 2020. Table 5.11 outlines the prevalence and concentrations of norovirus in SH2 for this time period.

Table 5.11: Norovirus prevalence and concentrations observed in SH2 between December 2019 and March 2020

¹ ISO 15216-1:2017 Microbiology of the food chain – Horizontal method for determination of hepatitis A virus and norovirus using real-time RT-PCR – Part 1: Method for quantification

² Norovirus refers to total norovirus i.e. the combined total of genogroups I and II. The LOQ for both test methods is 100 copies/g; where a test result of <LOQ is obtained the value is substituted by half the LOQ (50 copies/g) before combining both test results.

	SH2
No of samples (n)	10
% Positive	100.0
Geometric mean conc.	1889
Min conc.	662
Max conc.	5041

Summary

The norovirus testing undertaken in the Sligo Harbour production area demonstrates a high prevalence of norovirus in the production areas during the winter months (October to April). Regular and continual testing over three separate winter periods confirms consistent contamination at site SH1. Testing undertaken at site SH2 also indicates that this part of the production is also at high risk of norovirus contamination, although there is significantly less data compared to SH1. In general, the norovirus testing from the Sligo Harbour production area indicates that the production area is generally at high risk of norovirus contamination.

5.2. Current Data

5.2.1. Sampling Sites & Methodology

Nine water sampling sites were sampled within the Sligo Harbour BMCPA between November 2018 and February 2019. The locations of these sites can be seen in Figure 5.8 and Table 5.12 shows the station coordinates.

Two stations were sampled on the 20th November 2018 (Stations 1, 2), there was no rain on the previous day. Three stations were sampled on the 21st November 2018 (Stations 3-5). There was 20.1 mm of rain over the two previous days. One station was sampled on the 4th January 2019 (Stations 6). There was 0.5mm of rain over the two previous days. Two station was sampled on the 10th January 2019 (Stations 7, 8). There was 2.4mm of rain over the two previous days. One station was sampled on the 5th February 2019 (Stations 9). There was 0.5mm of rain on the two previous days. Of the 9 water samples collected, 8 were taken from river/stream outflows (Stations 2-9) and 1 was from a drainage ditch (Station 1).

In addition, a bacteriological survey for shellfish flesh was carried out over a three month period (Feb-April 2020). Three locations were sampled which were located within pacific oyster harvesting areas. This survey was carried out to aid in the selection of the most appropriate RMP location for oysters. The locations of these sites can be seen in Figure 5.8 and Table 5.13 shows the station coordinates.

All stations were sampled on the 26th February, 16th of March and 7th of April 2020. Rainfall for the previous 48 hours was 23.5mm on the 26th of February, 10.6mm on the 16th of March and 5.7mm on the 7th of April.

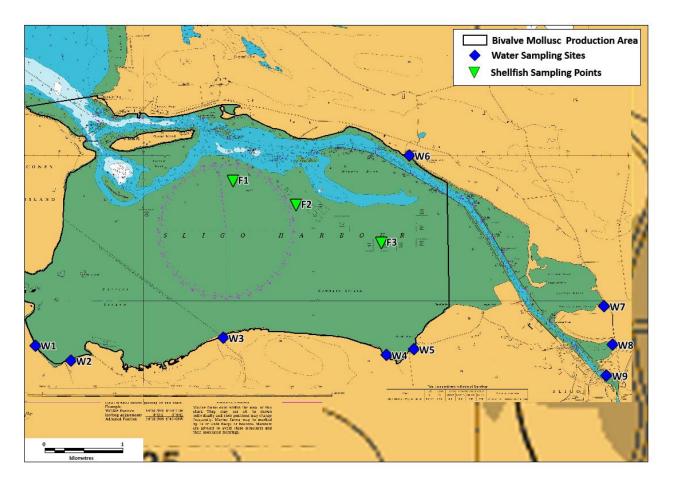


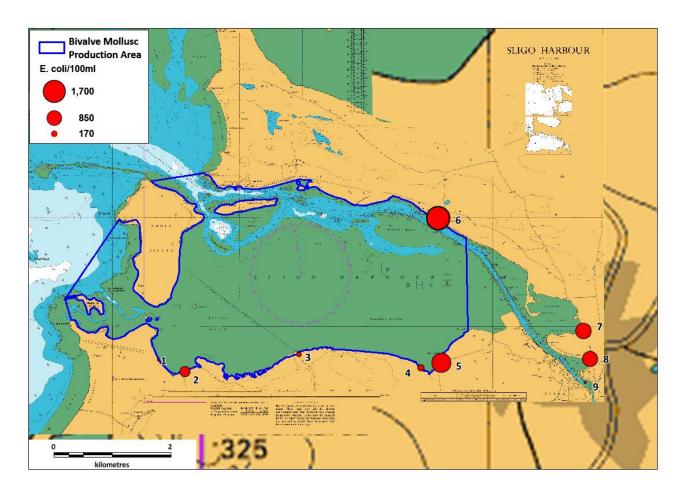
Figure 5.8: Water and Shellfish sampling sites.

Table 5.12: Water sample coordinates with date of sample	ing.
--	------

Station	Feature	Latitude	Longitude	Easting	Northing	Sampling Date
W1	Drainage ditch	54.2784	-8.58877	161698.2	336779.4	20/11/2018
W2	Small stream	54.27667	-8.58175	162153.6	336582.7	20/11/2018
W3	Small stream	54.2793	-8.55187	164102.6	336860.1	21/11/2018
W4	Stream/small river	54.2773	-8.51975	166193	336621.6	21/11/2018
W5	Stream	54.27798	-8.51432	166547.4	336695.1	21/11/2018
W6	Small river	54.30027	-8.51525	166504.8	339176	04/01/2019
W7	Doonally stream	54.2829	-8.47693	168986.3	337225.3	10/01/2019
W8	Copper River	54.2785	-8.47527	169091.6	336734.8	10/01/2019
W9	Garavogue River	54.27492	-8.47647	169010.7	336336.5	05/02/2019

Table 5.13: Shellfish sample coordinates with date of sampling.

Station	Feature	Latitude	Longitude	Easting	Northing	Sampling Date
F1	Oyster trestle	54.29746	-8.54995	164243.2	338880.6	26 Feb, 16 th March & 7 th April 2020
F2	Oyster trestle	54.29469	-8.53758	165046.3	338566.1	26 Feb, 16 th March & 7 th April 2020
F3	Oyster trestle	54.29034	-8.52081	166134.6	338073.7	26 Feb, 16 th March & 7 th April 2020


All water samples were collected in sterile plastic water bottles. These samples were delivered at chilled temperatures to Aqualab, Killybegs, County Donegal within 24 hours of collection. AQUALAB is INAB accredited.

5.2.2. Microbial Analysis Results

Table 5.14 shows the water sample analysis results and Figure 5.9 shows the location and magnitude of the results. Highest *E. coli* levels were recorded from an unnamed river on the northern shore (Station 6; 1,700 cfu/100ml), followed by an unnamed stream on the southern shore (Station 5; 1,300 cfu/100ml). The next two highest *E. coli* results were recorded at Stations 7 (870 cfu/100ml) and 8 (850 cfu/100ml) from the Doonally Stream and Copper River respectively, both located opposite Sligo port area. The station from the Garavogue River had a value of 220 cfu/100ml (Station 9). The lowest *E. coli* levels came from a drainage ditch (Station 1, 4 cfu/100ml) in the southwestern corner of the harbour and from a small stream (Station 4, 64 cfu/100ml) on the southeastern corner of the site.

Station No.	<i>E. coli</i> (cfu/ 100ml)
1	4
2	410
3	64
4	160
5	1300
6	1700
7	870
8	850
9	220

Table 5.14: Water *E. coli* results for Sligo Harbour.

Figure 5.9: *E. coli* levels recorded during the Sligo Harbour shore survey.

Table 5.15 shows the results of the three month shellfish monitoring survey and Figure 5.10 gives a graphical representation of the data. Results ranged from <18 MPN/100g in April at F3 to 790 MPN/100g in March at F3. The location with the highest average result over the three month period was F3. Figure 5.10 also shows the relationship between rainfall and *E. coli* concentrations.

Date /Location	F1	F2	F3
26 th Feb	230	490	330
16 th Mar	330	78	790
7 th Apr	20	40	<18
Average	193.3	202.7	379.3

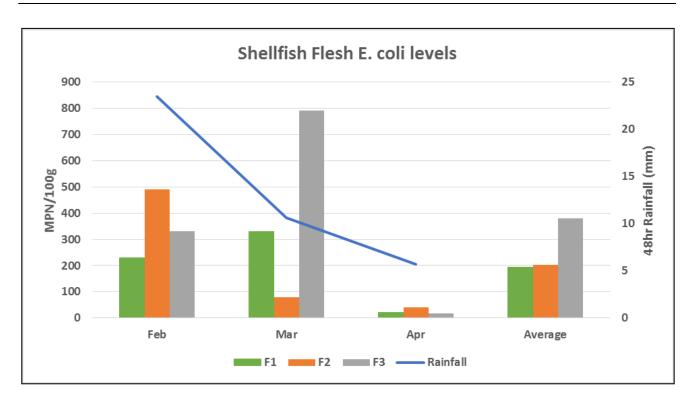


Figure 5.10: Shellfish flesh *E. coli* results for Sligo Harbour with previous 48 hour rainfall levels.

6. Overall Assessment of the Effect of Contamination on Shellfish

6.1. Human sewage/Human population

The area in the vicinity of Sligo Harbour has relatively high population concentrations with Sligo Town and its hinterland having a population of *ca* 17,000. Other towns/villages in the catchment include Manorhamilton, Rosses Point, Strandhill and Dromahair. The total population of the entire catchment area of Sligo Harbour is just over 41,000. This population concentration is evidenced by the number of WwTPs in the catchment, seven in total with three discharging directly into the production area itself.

Four of these WwTPs (Ballintogher, Killarga, Dromahair and Manorhamilton) discharge into rivers much higher in the catchment and there impacts will be diluted to a large extent by the receiving waters having to pass through the large water body of Lough Gill before finally reaching the production area adjacent Sligo Town. It is anticipated though that they will add to the background contaminant levels already reaching the production area through the Garavaogue River.

Strandhill WwTP discharges to the open ocean adjacent the production area. This discharge point, including a storm water overflow facility is located to the west of the actual treatment works in an area of open sea and it is expected that waste water from here will be well diluted and dispersed. If any contamination was to enter the production area from this discharge it would likely be contained within the south western extent of

the bay. The tidal road that allows access to Coney Island at low water would act as a barrier preventing significant mixing of water either side of this road. Therefore, the only shellfish beds that are likely to be impacted are the two smaller ones located to the south west of the road. Contamination could only enter from this source on flooding tides and the high salinity of the receiving water will also limit the level of contamination from this source.

The Rosses Point WwTP is currently over capacity and offers only primary treatment and discharges directly into the production area. During the shoreline survey the discharge pipe from the treatment works was found to be broken and was discharging sewage waste upon the foreshore. The site is located to the north of the main pacific oyster growing area, directly opposite but separated by the main navigation channel, and may impact upon the shellfish due to its proximity and low treatment levels.

The Sligo Town WwTP also discharges directly to the harbour upstream of the actual production area boundaries at or near to the quay in Sligo Town. With a current population equivalent of 28,158 and a maximum daily discharge of 37,000 m³ this is the biggest treatment works within the catchment and is likely the main impacting source of contamination levels in the harvesting area. This plant capacity is greater than the six other WwTPs in the catchment combined.

Sligo WwTP treats waste to tertiary level but this is negated due to the population equivalent, the potential maximum flow rates, the associated storm water overflows discharges and the proximity of the site to the shellfish beds. Discharge from the plant is to the inner harbour area is carried westward towards the harvesting area on the ebbing tidal stream.

In addition to the treatment works themselves, there are a number of stormwater overflows also discharging either directly into the production area or immediately upstream. There are three associated with the Rosses Point system, all located to the west of the treatment plant and along the northern shore of the production area. In addition there are six separate such overflows associated with the Sligo treatment works. It is expected that all of these overflows will affect contamination levels within the production area during or after periods of heavy rainfall.

Separately, there are 18 section 4 trade discharge licences and 9 industrial discharge licences within the catchment. Many of these carry no domestic effluent and discharge to either groundwater or the existing sewer network. A number though discharge to surface waters within the catchment and a smaller number again to surface waters adjacent the production area itself. Those licences belonging to Radisson Blu Hotel and Cregg House are discharging mixed trade and domestic effluent to surface waters adjacent the production area. The latter was identified as posing a risk to the shellfish waters due to insufficient assimilative capacity in the surface waters to which it discharged

The majority of households in the catchment are connected to the public sewer system, however, the 2009 pollution reduction program stated that there were 3,908 on-site waste water treatment systems within the catchment which is a density higher than the national average.

In terms of shipping there are 24 boating related infrastructural points within Sligo Harbour. Generally with the exception of the port of Sligo itself vessel traffic is low with most activity being confined to the summer months and that being primarily small leisure craft. The port itself, whilst a commercial port, tends to have low numbers of vessels arriving such as in 2017 where there were 9 commercial arrivals. No data are available regarding any discharges but the low vessel numbers would negate any significant impacts on water quality.

6.2. Agriculture

Land use in the Sligo catchment, particularly in the upper parts away from the urban areas around Sligo Town, is largely agricultural. The lower lying areas are used for cattle production and the higher areas for sheep. An estimate was made of the amount of land in the catchment under agricultural use and it was calculated that 21, 462 ha were being utilised which amounts to 36% of the total area of the catchment. In terms of animal numbers, sheep are most prevalent particularly in the northern part of the catchment which is on the whole more mountainous and more suitable for sheep; sheep were also recorded at Coney Island during the shoreline survey. Cattle numbers are higher in the better lands to the south and in the valleys between the mountains. The number of animals within the catchment is difficult to calculate in total as many of the electoral divisions overlap the catchment boundary but it is worth noting the figures none the less with 98,719 sheep and 27,349 cattle being recorded from the CSO 2019 figures. These are significant livestock numbers and contamination from them will find its way into the production area, primarily through the Garavogue River and to a lesser degree through the smaller streams and rivers.

6.3. Rivers and Streams

The Garavogue River is the most significant freshwater input into the production area and is likely the main source of diffuse and point source contamination into the production area also. Sligo Harbour drains a catchment of 448 km² and 89% of this flows through this one river underlying its importance. The current WFD status of the Garavogue River is poor and sampling conducted during the shoreline survey gave a result of 220 cfu/100ml which is in itself not excessive but combined with a mean flow rate of 12.7 m³/s and highs up to 60 m³/s mean this will have a direct impact on contamination levels in the production area.

The Doonally and Copper Rivers are two smaller waters that enter the production area alongside the

Garavogue and during the shoreline survey showed moderate levels of contamination with results of 870 cfu/100m and 850 cfu/100ml respectively. Contamination from these two small rivers will combine with the main freshwater flow of the Garavogue when entering the production area through the main navigation channel.

An unnamed river that enters the production area on the northern shore and which is geographically nearest the shellfish beds showed the highest level of contamination from the survey with 1700 cfu/100 ml being recorded. It is unclear what is impacting contamination levels to this stream but there are two section 4 discharge licences nearby and the stream also runs through agricultural land. It is expected this river, albeit of low volume size, may impact contamination levels in proximity to the shellfish beds on the middle bank of the production area. A small stream near Gibraltar Point in the south eastern end of the production area showed elevated levels of faecal contamination. This runs through an urban area west of Sligo Town.

Almost all water courses sampled during the shoreline survey showed levels of faecal contamination ranging from moderate to high with the exception of two small streams to the south west of the production area where levels were low.

6.4. Movement of Contaminants

The majority of the harbour is made up of intertidal sand and mudflats. A navigational channel runs north westerly from Sligo Town towards Oyster Island following the northern shore. It is this channel that is the main conduit for contamination from the upper catchment and Sligo Town to reach the shellfish beds.

RPS (2015) carried out a modelling study of Sligo Harbour in relation to a proposed navigational channel dredging plan. This showed that except for the area at the north western part of the harbour at Rosses Point, north of Coney Island and around Oyster Island where velocities were predicted to be in the region of 1 m sec, velocities in the remaining part of the harbour were less than 0.5 m sec. Admiralty Chart tidal streams indicated current speeds of up to 5 knots within the main navigational channel on both the flood and ebb tides.

The ebb tide flows in a north westerly direction along the main navigation channel with tidal flows in the southern half of the harbour lower in velocity due to the fact that much of it is very shallow. It is expected that the ebbing tide and the freshwater flush from the Garavagoe River will carry faecal contamination west wards and towards the shellfish beds located along the main navigational channel edge. This will include contamination from the Doonally and Copper Rivers as evidenced during the shoreline survey and more

importantly the Sligo Town Wwtp and it's associated stormwater overflows. The channel retaining wall that terminates near Ballincar may influence retention of this flow but beyond this, the channel widens and it is likely that the shellfish beds nearest this point will be impacted.

Contamination from the small stream near Gibraltar Point identified in the shoreline survey may also be brought towards the shellfish beds on the ebbing tide although due to the small size and volume it may simply add to background levels.

Based on sampling carried out as of the Sligo Main Drainage Project, turbidity levels within Sligo Harbour vary significantly depending on tidal conditions, the amount of freshwater entering the system and wave action. Levels were higher in the inner harbour and in the Cummeen Strand area. High turbidity levels and current velocities in the inner harbour where the Sligo main WwTP discharges may facilitate transport of larger amounts of faecal contamination into the shellfish harvesting area.

There is little data on retention or flushing times in Sligo Harbour although the modelling study carried out by Irish Hydrodata suggested a figure of 13 days; however, this is tempered by a lack of field data. This study suggests a much shorter flushing time of 24 hours although this is similarly constrained by a lack of field data. It is likely though that levels of contaminants from the ebb cycle will be re-introduced into the area of the shellfish beds on the flood tide. The Rosses Point WwTP located at Ballyweelin will likely impact contamination levels on the same beds on the flood tide as it flows in a south easterly direction towards them. This may also be the case for those stormwater discharges associated with the same WwTP. The small river at Ballyweelin which showed elevated levels of contamination during the shoreline survey may similarly influence contamination on the shellfish beds on the flooding tide.

The predominant wind direction in the production area is from the south west. Surface flows would be enhanced/retarded by winds blowing out or into the harbour particularly from this dominating southwesterly direction which may also lead to an increase in the dispersion of surface contaminants.

Work carried out by AQUAFACT on the Sligo Main Drainage project from 2014 to 2018 included the taking of water samples for *E.coli*, salinity and turbidity analysis at a number of stations throughout the production area. A pattern of contamination was evident with mean *E.coli* levels peaking in the inner harbour area and the north-eastern shoreline of the production area before declining rapidly towards the mouth of the bay at Rosses Point. It would appear that faecal contamination levels are heavily influenced within the inner harbour and Sligo Town area, remain significant along the north-eastern shoreline towards

Ballincar before becoming more dispersed and declining at the mouth of the outer bay. These data suggest that contamination levels decline in a linear fashion the further west water travels from the inner harbour area. A correlating pattern of decline in freshwater intrusion is evident from the same work with salinity at the inner harbour ranging from 0 - 17 PSU with that at Rosses Point varying between 25 to 32 PSU.

6.5. Wildlife

With regard to birds, it has been noted above (Section 4.1.6) bird faeces are rich in faecal bacteria and have been shown to be a source of faecal contamination in the marine environment. Cummeen Strand SPA (Site Code: IE004035) is located within the Sligo Harbour area and stretches from Sligo Town westwards to Coney Island. At low tide, extensive sand and mud flats are exposed. Cummeen Strand supports important concentrations of wintering waterfowl, including an internationally important Light-bellied Brent Goose flock (223) and nationally important populations of Oystercatcher (680) and Redshank (408) (NPWS, 2014). Other species occurring include Shelduck (86), Wigeon (149), Teal (54), Mallard (145), Red breasted Merganser (15), Golden Plover (428), Lapwing (695), Knot (165), Sanderling (14), Dunlin (539), Bar-tailed Godwit (85), Curlew (430), Greenshank (13) and Turnstone (62) (NPWS, 2014). Golden Plover and Bar-tailed Godwit are regularly present, which is of particular note as these species are listed on Annex I of the E.U. Birds Directive. As the distribution of these bird species all overlap with production sites, they therefore have the potential to add to background contamination levels.

Seabird droppings are typically far more liquid in character than solid in consistency and at low water, droppings from the birds will fall on to the exposed sea bed. Ultraviolet light from the sun will eradicate much of the coliform bacteria in the faeces and when the tide returns, the faeces will dilute and disperse in the water column. The large number of Brent geese that visit the site though may have an impact on background contamination levels but it is particularly difficult to accurately predict the levels and distribution of this contamination.

A haul out site in nearby Drumcliff and Ballisodare (outside of the production area) is used by both harbour and grey seas but marine mammal numbers are relatively low in Sligo Harbour and none were identified during the shoreline survey, it is considered unlikely that they are significant source of microbial pollution to shellfish being cultured within Sligo production area.

6.6. Seasonality

Tourism infrastructure in the immediate vicinity of the production area is centred around Rosses Point, Sligo

Town and to a lesser degree Strandhill and it would be anticipated that there would be a slight rise in population levels during the busy tourism months of July, August and September. Numbers of holiday homes though in the catchment are relatively low.

In terms of agriculture, numbers of sheep would be expected to be higher in Spring/Summer when lambs would be present but at this time of the year there will also be more extensive grazing in the hills and thus impacts would be more widely spread.

There will also be a distinct seasonal flux in numbers of wintering wildfowl during the autumn/winter period. This was noted during the shoreline survey when large conglomerations of mixed bird species were noted in the Cummeen Strand area and the inner harbour areas. Impacts from these birds will be most apparent where they graze nearby the shellfish beds adjoining the main channel but will otherwise add to background contamination levels.

To be expected, the analysis of rainfall data shows a clear seasonal trend between the drier summer months and the wetter autumn/winter however as can be seen from the data, extreme rainfall events leading to episodes of high run-off can occur in most months of the year and it is therefore not just the winter months that are at risk of increased contamination.

Analysis of the historical microbiological shellfish for both clam and pacific oyster data showed no clear seasonal trends in terms of higher results. Similarly analysis of *E.coli* i water sampling carried out as part of the Sligo Main Drainage project showed no clear seasonal pattern emerging in results with high maximum results during each season appearing to be isolated events.

6.7. Shoreline survey

The SFPA carried out a survey of the shoreline of Sligo Harbour to document any outfalls *etc.* that could give rise to pollution entering the sea. In total, 65 features were identified. Figure 3.22 (above) shows the locations of these features noted during the survey. Of these 65 features, 16 were rivers/streams, 19 were drains, 3 were WWTPs, 1 was a discharge from a WwTP, 15 were discharge pipes and 4 were manholes. Figures 4.23 to 4.39 (above) show aerial imagery of the location of each of the features and Figures 3.40 to 3.44 (above) show images of most of these features. Table 3.14 (see above) details all features identified and the numbering used is cross-referenced to Figures 3.22 to 3.44 (see above). The survey also recorded four sightings of flocks of birds and species included geese, waders and gulls. One flock of sheep was also noted.

Of all of these features, the discharge pipes from the waste water treatment plants (Nos 1, 53 and 26 on Fig.3.22 above) are regarded as the most significant single structures that could impact on sea water quality.

However, as the Strandhill discharge pipe opens out into the open sea to the west of Sligo Harbour, it is expected to be well diluted and dispersed. Any possible contamination from this source could only enter the production area on a flooding tide and is further restricted to the south western extent of the harbour due to the high ground which acts as a tidal road connecting the mainland to Coney Island. Therefore, the only shellfish beds that could be impacted by Strandhill WwTP are the two beds located to the south west of the Bay. The potential impact on these beds is reduced due to contamination entering only on flooding tides and the high salinity of the discharge receiving water.

The effluent pipe discharging into Sligo Harbour from the Sligo treatment plant (No. 26, Fig. 3.22 above) opens into the sea near the harbour at Finisklin while the effluent pipe from the Rosses Point treatment plant (No. 53, Fig.3.22 above) discharges to the sea in the townland of Ballyweelin.

A number of pipes were observed within the confines of the docks and Sligo Town area. It was not possible to firmly identify the origin of all of these as most were not flowing at the time of the survey but it would seem probable that most were rainfall related discharges. One discharge pipe at the rear of the Cartron area appeared to be sewage related.

Sampling of water courses during the shoreline survey indicated generally moderate to high levels of contamination with the exception of those smaller watercourses entering the south west of the production area. Faecal contamination was predominantly higher in those water courses draining through urban areas around Sligo Town. The small river at Ballyweelin bucked this trend and gave the highest count of the survey.

Observations of wildlife were limited to birds with high numbers present particularly in the Cummeen Strand area of the harbour.

6.8. Pacific Oysters

There are nine separate licensed areas for pacific oyster cultivation within the production area but not all are currently being utilised. During the shoreline survey, there was no stock on the site at Rinn in the southern western section of the production area.

Oyster flesh was tested once monthly from February to April for *E coli* levels at three locations (See section 5.2.2). The survey concluded that on average the location with the highest *E. coli* results was the most easterly of the three locations. Therefore, the original RMP has been relocated to this location as it is the oyster bed which is likely to have the highest level of contamination. (See figure 7.1 below).

7. RMPS and Sampling Plan

7.1. Pacific Oysters (Crassostrea gigas)

The location of the new RMP for oysters is 54.29066, -8.521002 (166,122.4E, 338,109.3N) and is shown in Figure 7.2. Samples should be taken from trestles at the sampling location and sampling will be on a monthly basis. Samples should be taken from this point or no more than 100 metres maximum from it.

10 individuals of market size (minimum shell length 8 cms) should be collected for bacteriological analysis.

Corner	Longitude	Latitude	Easting	Northing	
NW	-8.576697	54.307046	162,510.4	339,961.6	
NW	-8.590588	54.305816	161,605.1	339,832.1	
NW	-8.599180	54.299941	161,040.2	339,182.9	
SW	-8.613393	54.287656	160,103.0	337,823.4	
SW	-8.613307	54.287467	160,108.4	337,802.3	
SW	-8.611677	54.284402	160,211.6	337,460.2	
SE	-8.507376	54.282810	167,003.4	337,229.1	
NE	-8.507750	54.297046	166,990.5	338,813.9	

Table 7.1: Coordinates of the Production Area.

Table 7.2: Coordinates of each RMP and its relevant species.

RMP	Site Code	Species	Longitude	Latitude	Easting	Northing
RMP 1	SO-SH-SH	Pacific Oyster	-8.521002	54.29066	166,122.4	338,109.3

November 2020

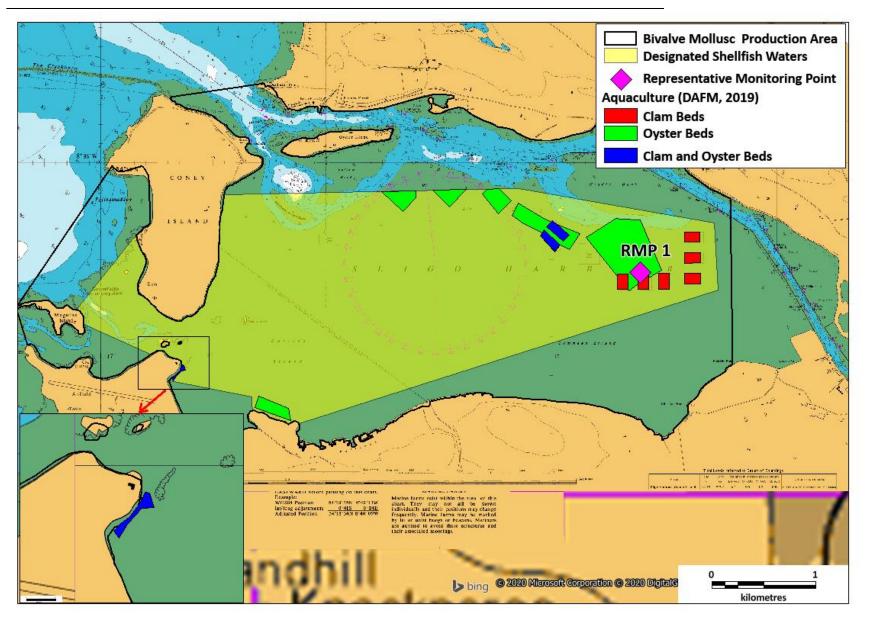


Figure 7.1: Bivalve Mollusc Classified Production Area and Designated Shellfish Waters within Sligo Harbour.

Sea Fisheries Protection Authority
November 2020

7.2. Species Specific RMP maps

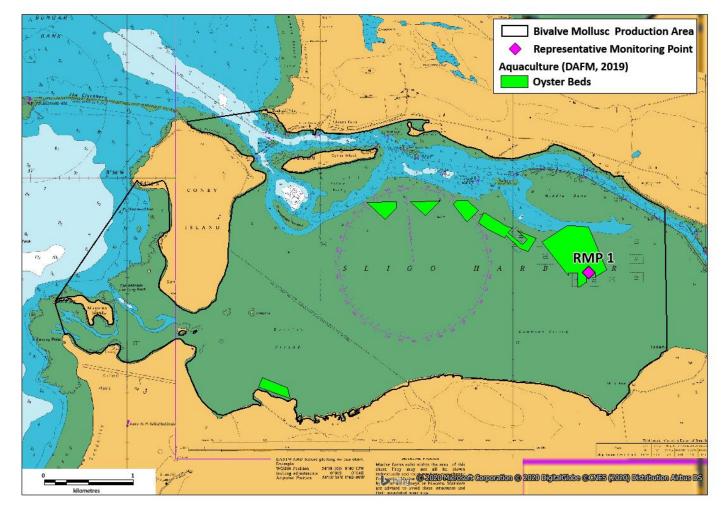


Figure 7.2: Location of the Oyster RMP within Sligo Harbour.

7.3. General Sampling Method

All collection and transport of shellfish samples for E.coli testing under the Sampling Plan identified as part of the Sligo Harbour Sanitary Survey should follow the Sea Fisheries Protection Authority's own Code of Practice for the Microbiological Monitoring of Bivalve Mollusc Production Areas (SFPA, 2017). The guidance notes are found at Appendix 9.2 of that document.

8. References

AQUAFACT. 2014a. Sligo Main Drainage Monitoring of Receiving Waters Part 1 – March 2014. Unpublished Report prepared on behalf of Celtic Anglian Water.

AQUAFACT. 2014b. Sligo Main Drainage Monitoring of Receiving Waters Part 2 – June 2014. Unpublished Report prepared on behalf of Celtic Anglian Water.

AQUAFACT. 2014c. Sligo Main Drainage Monitoring of Receiving Waters Part 3 – September 2014. Unpublished Report prepared on behalf of Celtic Anglian Water.

AQUAFACT. 2014d. Sligo Main Drainage Monitoring of Receiving Waters Part 4 – December 2014. Unpublished Report prepared on behalf of Celtic Anglian Water.

AQUAFACT. 2015a. Sligo Main Drainage Monitoring of Receiving Waters Part 1 – March 2015. Unpublished Report prepared on behalf of Celtic Anglian Water.

AQUAFACT. 2015b. Sligo Main Drainage Monitoring of Receiving Waters Part 2 – June 2015. Unpublished Report prepared on behalf of Celtic Anglian Water.

AQUAFACT. 2015c. Sligo Main Drainage Monitoring of Receiving Waters Part 3 – September 2015. Unpublished Report prepared on behalf of Celtic Anglian Water.

AQUAFACT. 2015d. Sligo Main Drainage Monitoring of Receiving Waters Part 4 – December 2015. Unpublished Report prepared on behalf of Celtic Anglian Water.

AQUAFACT. 2016a. Sligo Main Drainage Monitoring of Receiving Waters Part 1 – March 2016. Unpublished Report prepared on behalf of Celtic Anglian Water.

AQUAFACT. 2016b. Sligo Main Drainage Monitoring of Receiving Waters Part 2 – June 2016. Unpublished Report prepared on behalf of Celtic Anglian Water.

AQUAFACT. 2016c. Sligo Main Drainage Monitoring of Receiving Waters Part 3 –October 2016. Unpublished Report prepared on behalf of Celtic Anglian Water.

AQUAFACT. 2016d. Sligo Main Drainage Monitoring of Receiving Waters Part 4 – December 2016. Unpublished Report prepared on behalf of Celtic Anglian Water.

AQUAFACT. 2017a. Sligo Main Drainage Monitoring of Receiving Waters Part 1 – March 2017. Unpublished

Report prepared on behalf of Celtic Anglian Water.

AQUAFACT. 2017b. Sligo Main Drainage Monitoring of Receiving Waters Part 2 – June 2017. Unpublished Report prepared on behalf of Celtic Anglian Water.

AQUAFACT. 2017c. Sligo Main Drainage Monitoring of Receiving Waters Part 3 – September 2017. Unpublished Report prepared on behalf of Celtic Anglian Water.

AQUAFACT. 2017d. Sligo Main Drainage Monitoring of Receiving Waters Part 4 – December 2017. Unpublished Report prepared on behalf of Celtic Anglian Water.

AQUAFACT. 2018a. Sligo Main Drainage Monitoring of Receiving Waters Part 1 – March 2018. Unpublished Report prepared on behalf of Celtic Anglian Water.

AQUAFACT. 2018b. Sligo Main Drainage Monitoring of Receiving Waters Part 2 – June 2018. Unpublished Report prepared on behalf of Celtic Anglian Water.

AQUAFACT. 2018c. Sligo Main Drainage Monitoring of Receiving Waters Part 3 – September 2018. Unpublished Report prepared on behalf of Celtic Anglian Water.

AQUAFACT. 2018d. Sligo Main Drainage Monitoring of Receiving Waters Part 4 – December 2018. Unpublished Report prepared on behalf of Celtic Anglian Water.

Alderisio, K.A., & N. DeLuca. 1999. Seasonal Enumeration of Fecal Coliform Bacteria from the Faeces of Ring-Billed Gulls (*Larus delawarensis*) and Canada Geese (*Branta canadensis*). *Appl. Environ. Microbiol*. **65**:655628–5630.

BWI.2019.SiteSummaryTablefor0C492Inishbofin.https://f1.caspio.com/dp/f4db3000060acbd80db9403f857cAccessed March 2019.

CEFAS. 2017. Microbiological Monitoring of Bivalve Mollusc Harvesting Area Guide to Good Practice: Technical Application. EU Working Group on the Microbiological Monitoring of Bivalve Mollusc Harvesting Areas. Issue 6: January 2016.

Crowther, J., Kay, D. & M.D. Wyer. 2002. Faecal indicator concentrations in waters draining lowland pastoral catchments in the UK: relationships with land use and farming practices. *Water Research* **36**: 1725-1734.

CSO. 2019a. Census 2016 Small Area Population Statistics. <u>http://census.cso.ie/sapmap/</u> Accessed March 2019

CSO. 2019b. Census of Agriculture 2010. <u>http://census.cso.ie/censusagriculture</u> Accessed March 2019.

CSO. 2019c. Statistics of Port Traffic 2017. https://www.cso.ie/en/releasesandpublications/er/spt/statisticsofporttraffic2017/ Accessed March 2019

DAFM. 2019. Licenced Aquaculture Sites. March 2019.

Elmir, S.M., Wright, M.E., Abdelzaher, A., Solo-Gabriele, H.M., Fleming, L.E., Miller, G., Rybolowik, M, Shih, M.-T.P., Pillai, S.P., Cooper, J.A & E.A. Quaye. 2007. Quantitative evaluation of bacteria released by bathers

in a marine water. Water Research, 41(1): 3-10.

EPA. 2019. WFD Status 2010 – 2015. <u>https://gis.epa.ie/EPAMaps/</u> Accessed March 2019.

EPA. 2019a. WWTP locations <u>https://gis.epa.ie/EPAMaps/SewageTreatment</u> Accessed March 2019.

EPA. 2019b. EPA HydroNet <u>http://epa.ie/hydronet/#Flow</u> Accessed February 2019.

EPA. 2019c. EPA licenced facilities (IPC, IEL and Waste) <u>http://gis.epa.ie/GetData/Download</u> Accessed March 2019.

EPA. 2019d. WFD Section 4 Discharges http://gis.epa.ie/GetData/Download Accessed March 2019.

EPA. 2019e. Corine Land use http://gis.epa.ie/GetData/Download Accessed March 2019

Failte Ireland. 2018a. Tourism Facts 2017. Issued by Research Unit, Failte Ireland July 2018. http://www.failteireland.ie/FailteIreland/media/WebsiteStructure/Documents/3 Research Insights/5 Inte rnational Tourism_Trends/Tourism-Facts-2017 1.pdf?ext=.pdf

FailteIreland.2018b.2017ToplinePerformancebyCounty.http://www.failteireland.ie/FailteIreland/media/WebsiteStructure/Documents/3ResearchInsights/2RegionalSurveysReports/2017-topline-regional-performance-(003).pdf?ext=.pdf

FAO. 2019. Cultured Aquatic Species Information Programme *Venerupis pullastra* (Montague, 1803). <u>http://www.fao.org/fishery/culturedspecies/Venerupis_pullastra/en</u> Accessed August 2019.

Fitzgerald D. L. 2007. Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin GESAMP. 1990. *The state of the Marine Environment*. UNEP Regional Seas Report and Studies No. 15. UNEP 1990.

IFI. 2019. Sea Fishing. Northwestern Regional Fisheries Board.

http://fishinginireland.info/sea/northwest/sligo.htm

Irish Hydrodata Ltd. 2012. Modelling of Mercury Discharges from the Sligo Town WWTP outfall. Prepared on behalf of Elanco Animal Health Ireland Ltd. April 2012.

Ishii, S., Hansen, D.L., Hicks, R.E., & M.J. Sadowsky. 2007. Beach sand and sediments are temporal sinks and sources of *Escherichia coli* in Lake Superior. *Environ. Sci. Technol.* **41**:2203–2209.

Jones, F. & R.W. White. 1984. Health and amenity aspects of surface waters. *Water Pollution Control* Vol. 83: 215-225.

Jones, F., Smith, P., & D.C. Watson. 1978. Pollution of a water supply catchment by breeding gulls and the potential of environmental health implications. *J. Institution of Water Engineers and Scientists* **32**:469–482.

Levesque, B., Brousseau, P., Simard, P., Dewailly, Meisels, M., Ramsay, D. & J. Joly. 1993. Impact of the Ring-Billed Gull (Larus delawarensis) on the Microbiological Quality of Recreational Water. *Applied and Environmental* Microbiology 1228-1230.

Levesque, B., Brousseau, P., Bernier, F., Dewailly, E & J. Joly. 2000. Study of the content of ring-billed gull droppings in relation to recreational water quality. *Water Res.* **34**:1089–1096.

Lisle, J.T., Smith, J.J., Edwards, D.D. & G.A. McFeters. 2004. Occurrence of Microbial Indicator and *Clostridium perfringens* in Wastewater, Water Column Samples, Sediments, Drinking Water, and Weddell Seal Feces Collected at McMurdo Station, Antarctica. *Appl. Environ. Microbiol.* **70(12)**: 7269–7276.

Marine Institute. 2015. Article 6.2 (Habitats Directive) Risk Assessment. The effects of fisheries on Qualifying Interests in Special Areas of Conservation in Irish coastal waters. Marine Institute, July 2015.

Met Eireann. 2019a. Historical Data Finner 2014-2018. <u>https://www.met.ie/climate/available-</u> <u>data/historical-data</u> Accessed March 2019.

Met Eireann. 2019b. The current rainfall Irish climatology and the long term average period 1981 to 2010. https://www.met.ie/climate/what-we-measure/rainfall Accessed February 2019.

Met Eireann. 2019c. Belmullet 1981-2010 averages. <u>https://www.met.ie/climate-ireland/1981-</u> 2010/belmullet.html Accessed February 2019.

Met Eireann. 2019d. Historical Data Sligo Airport 2014-2018. <u>https://www.met.ie/climate/available-</u> <u>data/historical-data</u> Accessed March 2019.

Met Eireann. 2019e. return period rainfall depths for sliding durations (76300E; 265300N). www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies TN61.pdf

NPWS.2014.CummeenStrandSPASiteSynopsis(SiteCode:004035)https://www.npws.ie/sites/default/files/protected-sites/synopsis/SY004035.pdf

NPWS. 2016. Cummeen Strand/ Drumcliff Bay (Sligo Bay) SAC Site Synopsis (Site Code: 000627). https://www.npws.ie/sites/default/files/protected-sites/synopsis/SY000627.pdf

OPW 2019. Hydro data. <u>http://waterlevel.ie/hydro-data/search.html?rbd=WESTERN%20RBD#</u>. Acessed 08/04/19.

Oshira, R. & R. Fujioka. 1995. Sand, soil, and pigeon droppings: Sources of indicator bacteria in the waters of Hanauma Bay, Oahu, Hawaii. *Water Sci. Technol.* **31:** 251–254.

PMFSC (Pacific States Marine Fisheries Commission). 1996. Pacific Oyster fact sheet. <u>http://www.psmfc.org/habitat/edu oyster fact.html</u>. Accessed February 2010.

Papadakis, J.A., Mavridou, A., Richardson, S.C., Lampiri, M. & U. Marcelou. 1997. Bather-related microbial and yeast populations in sand and seawater. *Water Research*, **314**: 799-804.

RPS. 2015. Assessment of Impact on the Environment: Dredging and Dumping Dispersion Models. Submitted as part of an application for Disposal at Sea Licence. http://www.epa.ie/licences/lic eDMS/090151b28053f7a6.pdf. Accessed April 2019

SFPA. 2017. Code of Practice for the Microbiological Monitoring of Bivalve Mollusc Production Areas. Version 6 May 2017. pp. 42.

Standridge, J.H., Delfino, J.J., Kleppe, L.B., & R. Butler. 1979. Effect of waterfowl (Anas platyrhynchos) on

indicator bacteria populations in a recreational lake in Madison, Wisconsin. *Appl. Environ. Microbiol.* **38:**547–550.

Appendix 1

Sligo Main Drainage *E. coli* Results 2014-2018

Station 5	Deepwater Quay							
Survey Month/Year	2014	2015	2016	2017	2018	Min	Max	Mean
March	390	52	794	738	71	52	794	409
June	105	37	31	156	8164	31	8164	1698.6
September/October	32	279	594	1722	2755	32	2755	1076.4
December	93	6867	4611	75	161	75	6867	2361.4
Station 6	1 mile down stream	n			Station	5, 5 year m	nean	1386.35
Survey Month/Year	2014	2015	2016	2017	2018	Min	Max	Mean
March	210	2247	359	187	9804	187	9804	2561.4
June	97	26	98	199	10	10	199	86
September/October	0	185	203	6893	1314	0	6893	1719
December	319	79	44	43	1565	43	1565	410
Station 7	Cummeen Strand				Station	Station 6, 5 year mean		
Survey Month/Year	2014	2015	2016	2017	2018	Min	Max	Mean
March	16	617	41	47	57	16	617	155.6
June	0	326	20	4	112	0	326	92.4
September/October	0	187	1046	598	5172	0	5172	1400.6
December	236	3076	387	21	84	21	3076	760.8
Station 8	Rosses Point				Station	7, 5 year m	nean	602.35
Survey Month/Year	2014	2015	2016	2017	2018	Min	Max	Mean
March	13	594	0	2	13	0	594	124.4
June	39	1	75	0	677	0	677	158.4
September/October	1	292	41	41	2	1	292	75.4
December	210	435	13	164	12	12	435	166.8
		·			Station	8, 5 year m	nean	131.25

Station 1									
Month	Season	2014	2015	2016	2017	2018	Min	Max	Mean
March	Spring	120	10	8	10	5	5	120	30.6
June	Summer	49	2	428	7	134	2	428	124
September/October	Autumn	115	3	2	52	80	2	115	50.4
December	Winter	23	13	15	35	6	6	35	18.4
5 year mean									55.85
Station 2									
Month	Season	2014	2015	2016	2017	2018	Min	Max	Mean
March	Spring	110	16	11	5	2	2	110	28.8
June	Summer	49	4	20	22	85	4	85	36
September/October	Autumn	21	5	68	41	47	5	68	36.4
December	Winter	97	910	5475	35	9	9	5475	1305.2
5 year mean									351.6
Station 3									
Month	Season	2014	2015	2016	2017	2018	Min	Max	Mean
March	Spring	410	28	770	1553	10	10	1553	554.2
June	Summer	196	133	479	7270	246	133	7270	1664.8
September/October	Autumn	613	435	96	960	1054	96	1054	631.6
December	Winter	43	292	38	n/a	167	38	292	135
5 year mean									778.58
Station 4									
Month	Season	2014	2015	2016	2017	2018	Min	Max	Mean
March	Spring	50	275	1300	2359	326	50	2359	862
June	Summer	216	84	613	93	631	84	631	327.4
September/October	Autumn	67	816	288	134	767	67	816	414.4
December	Winter	71	46	359	980	1565	46	1565	604.2
5 year mean									552
Station 5					I		I	I	I
Month	Season	Month	Season	Month	Season	Month	Season	Month	Season
March	Spring	390	52	794	738	71	52	794	409
June	Summer	105	37	31	156	8164	31	8164	1698.6

Month	Season	Month	Season	Month	Season	Month	Season	Month	Season
September/October	Autumn	32	279	594	1722	2755	32	2755	1076.4
December	Winter	93	6867	4611	75	161	75	6867	2361.4
5 year mean						•			1386.35
Station 6									
Month	Season	2014	2015	2016	2017	2018	Min	Max	Mean
March	Spring	210	2247	359	187	9804	187	9804	2561.4
June	Summer	97	26	98	199	10	10	199	86
September/October	Autumn	0	185	203	6893	1314	0	6893	1719
December	Winter	319	79	44	43	1565	43	1565	410
5 year mean									1194.1
Station 7									
Month	Season	2014	2015	2016	2017	2018	Min	Max	Mean
March	Spring	16	617	41	47	57	16	617	155.6
June	Summer	0	326	20	4	112	0	326	92.4
September/October	Autumn	0	187	1046	598	5172	0	5172	1400.6
December	Winter	236	3076	387	21	84	21	3076	760.8
5 year mean									602.35
Station 8	-								
Month	Season	2014	2015	2016	2017	2018	Min	Max	Mean
March	Spring	13	594	0	2	13	0	594	124.4
June	Summer	39	1	75	0	677	0	677	158.4
September/October	Autumn	1	292	41	41	2	1	292	75.4
December	Winter	210	435	13	164	12	12	435	166.8
5 year mean									131.25

Appendix 2

Statistical Analysis

Anova: Single Factor

Groups	Count	Sum	Average	Variance
Station 1	20	26.6482	1.33241	0.378261
Station 2	20	31.13604	1.556802	0.595517
Station 3	20	45.90034	2.295017	0.728598
Station 4	20	49.47163	2.473581	0.278348
Station 5	20	50.14182	2.507091	0.62217
Station 6	20	45.69487	2.284744	0.880757
Station 7	20	39.22839	1.961419	1.028381
Station 8	20	28.09187	1.404593	0.885271

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	32.86771	7	4.695387	6.959602	3.43E-07	2.070311
Within Groups	102.5488	152	0.674663			
Total	135.4165	159				

t-Test: Two sample assuming equal variance: Log E. coli vs Station Location (Water results 2014-2018)

	Station 8	Station 5
Mean	1.404593	2.507091
Variance	0.885271	0.62217
Observations	20	20
Pooled Variance	0.753721	
Hypothesized Mean Difference	0	
df	38	
t Stat	-4.0158	
P(T<=t) one-tail	0.000135	
t Critical one-tail	1.685954	
P(T<=t) two-tail	0.000269	
t Critical two-tail	2.024394	

	Station 8	Station 6
Mean	1.404593	2.284744
Variance	0.885271	0.880757
Observations	20	20
Pooled Variance	0.883014	
Hypothesized Mean Difference	0	
df	38	

	Station 8	Station 6
t Stat	-2.96192	
P(T<=t) one-tail	0.002624	
t Critical one-tail	1.685954	
P(T<=t) two-tail	0.005248	
t Critical two-tail	2.024394	

	Station 3	Station 1
Mean	2.295017	1.33241
Variance	0.728598	0.378261
Observations	20	20
Pooled Variance	0.55343	
Hypothesized Mean Difference	0	
df	38	
t Stat	4.091833	
P(T<=t) one-tail	0.000107	
t Critical one-tail	1.685954	
P(T<=t) two-tail	0.000215	
t Critical two-tail	2.024394	

	Station 1	Station 4
Mean	1.33241	2.473581
Variance	0.378261	0.278348
Observations	20	20
Pooled Variance	0.328305	
Hypothesized Mean Difference	0	
df	38	
Stat	-6.29814	
P(T<=t) one-tail	1.11E-07	
t Critical one-tail	1.685954	
P(T<=t) two-tail	2.22E-07	
Critical two-tail	2.024394	

t Critical two-tail	2.024394	
	Station 5	Station
Mean	2.507091	1.3324
Variance	0.62217	0.37826
Observations	20	2
Pooled Variance	0.500216	
Hypothesized Mean Difference	0	
df	38	
t Stat	5.252202	
P(T<=t) one-tail	3.01E-06	
t Critical one-tail	1.685954	
P(T<=t) two-tail	6.02E-06	

	Station 5	Station 1
t Critical two-tail	2.024394	

	Station 3	Station 2
Mean	2.295017	1.556802
Variance	0.728598	0.595517
Observations	20	20
Pooled Variance	0.662058	
Hypothesized Mean Difference	0	
df	38	
t Stat	2.869029	
P(T<=t) one-tail	0.003344	
t Critical one-tail	1.685954	
P(T<=t) two-tail	0.006688	
t Critical two-tail	2.024394	

	Station 2	Station 4
Mean	1.556802	2.473581
Variance	0.595517	0.278348
Observations	20	20
Pooled Variance	0.436933	
Hypothesized Mean Difference	0	
df	38	
t Stat	-4.38589	
P(T<=t) one-tail	4.42E-05	
t Critical one-tail	1.685954	
P(T<=t) two-tail	8.85E-05	
t Critical two-tail	2.024394	

	Station 5	Station 2
Mean	2.507091	1.556802
Variance	0.62217	0.595517
Observations	20	20
Pooled Variance	0.608844	
Hypothesized Mean Difference	0	
df	38	
t Stat	3.85126	
P(T<=t) one-tail	0.000219	
t Critical one-tail	1.685954	
P(T<=t) two-tail	0.000438	
t Critical two-tail	2.024394	

	Station 6	Station 2
Mean	2.284744	1.556802

	Station 6	Station 2
Variance	0.880757	0.595517
Observations	20	20
Pooled Variance	0.738137	
Hypothesized Mean Difference	0	
df	38	
t Stat	2.679342	
P(T<=t) one-tail	0.005421	
t Critical one-tail	1.685954	
P(T<=t) two-tail	0.010843	
t Critical two-tail	2.024394	

	Station 8	Station 3
Mean	1.404593	2.295017
Variance	0.885271	0.728598
Observations	20	20
Pooled Variance	0.806935	
Hypothesized Mean Difference	0	
df	38	
t Stat	-3.13457	
P(T<=t) one-tail	0.001656	
t Critical one-tail	1.685954	
P(T<=t) two-tail	0.003312	
t Critical two-tail	2.024394	

t-Test: Two sample assuming unequal variance: Log *E. coli* vs Station Location (Water results 2014-2018)

Station 8	Station 4
1.404593	2.473581
0.885271	0.278348
20	20
0	
30	
-4.43182	
5.76E-05	
1.697261	
0.000115	
2.042272	
Station 7	Station 1
Station /	Station I
1.961419	1.33241
	1.404593 0.885271 20 0 30 -4.43182 5.76E-05 1.697261 0.000115 2.042272

	Station 7	Station 1
Hypothesized Mean Difference	0	
df	31	
t Stat	2.371813	
P(T<=t) one-tail	0.012046	
t Critical one-tail	1.695519	
P(T<=t) two-tail	0.024093	
t Critical two-tail	2.039513	
	Station 6	Station 1
Mean	2.284744	1.33241
Variance	0.880757	0.378261
Observations	20	20
Hypothesized Mean Difference	0	
df	33	
t Stat	3.795668	
P(T<=t) one-tail	0.000299	
t Critical one-tail	1.69236	
P(T<=t) two-tail	0.000599	
t Critical two-tail	2.034515	

One way ANOVA: Log E. coli vs Season (Water results 2014-2018)

Anova: Single Factor

Count	Sum	Average	Variance
		<u> </u>	vununce
40	76.92858	1.923214	0.900048
40	73.22604	1.830651	0.787791
40	82.95352	2.073838	0.997196
39	83.205	2.133462	0.644456
	40	40 82.95352	40 82.95352 2.073838

ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
Between						
Groups	2.277857	3	0.759286	0.910867	0.437262	2.662945545
Within Groups	129.2057	155	0.833585			
Total	131.4836	158				

One way ANOVA: Log E. coli vs Season (Oyster Flesh results 2014-2019)

Anova: Single Factor

SUMMARY

SUMIMARY				
Groups	Count	Sum	Average	Variance
Spring	14	24.25728	1.732663	0.371209
Summer	13	20.95664	1.612049	0.232078
Autumn	14	23.82572	1.701837	0.094652
Winter	17	28.57176	1.680692	0.176767

ANOVA

Source of Variatio SS		df	MS	F	P-value	F crit
Between Groups	0.105029	3	0.03501	0.162007	0.921457	2.775762
Within Groups	11.66942	54	0.2161			
Total	11.77444	57				

Appendix 3

Species Specific Sampling Plan

Sligo Harbour

Bivalve Mollusc Classified Production Area

Oyster Sampling Plan

Site Name: Sligo Harbour

Site Identifier: SO-SH-SH

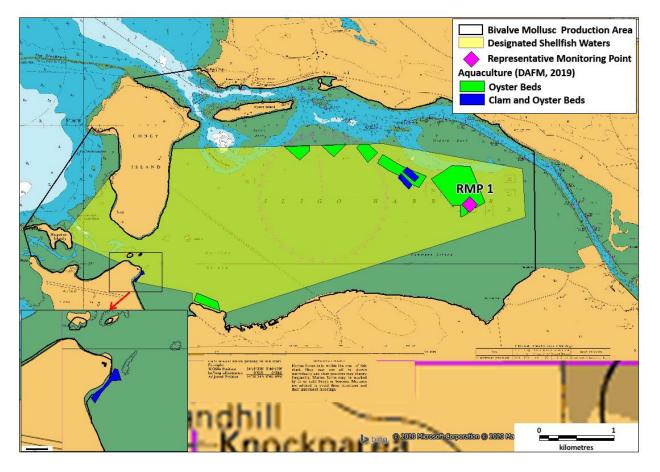
Monitoring Point Coordinates

Latitude: 54.29066 Longitude: -8.521002

Species: Crassostrea gigas

Sample Depth: Surface Sample Frequency: Monthly

Responsible Authority: Sea Fisheries Protection Authority


Authorised Samplers: SFPA Port Office Killybegs

Maximum Allowed Distance from Sampling Point: The sample must be taken

from within 100m of the sampling point.

Sampling Size: Minimum 10 market sized (8cm) animals

Sampling Method: Taken from trestles at point

